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40. On the Commutation Relation AB-BA-C
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Department of Mathe.matics, Tokyo Metropolitan University

(Comm. by Kinjir6 KUNUGI, M. J. A., Feb. 12, 1971)

We shall deal with commutation relation of the infinitesimal
generators of strongly continuous semi-groups on a Banach space X.

A few general references for this work are Foias, C., L. Geher
and B. Sz.-Nagy [1] and T. Kato [2]. The purpose of this paper is to
obtain a generalization of T. Kato’s theorem [2]. The proof of the
theorem is similar to that of T. Kato’s theorem.

The main theorem is as follows.
Theorem. Let {eBb}and {etB} be two contraction semi-groups on a

Banach space X satisfying the relation
( 1 eSetB--etBeSCe Os, too
for some contraction semi-group {euc} and suppose that D(C) D(B).
Then
(a) 9-D(AB) D(BA) is dense in X
(b) (AB-BA)x Cx for x e 2
(c) (A--a)(B--b)[2--X for all a, b satisfying Re(a)>0, Re(b)>0.
Conversely, let C be the infinitesimal generator of a contraction semi-
group. We suppose that D(C)DD(A), D(C)DD(B) and C commutes
with R(a; A) and R(b;B) for some pair a, b satisfying Re(a)>0,
Re(b)>0, and that there exists a dense linear subset 2 of D(AB)
D(BA) for which (b) holds. Furthermore, if we suppose, for some

pair a, b satisfying Re(a)>0, Re(b)>0, (A--a)(B--b)t2 is dense in X.
Then (1) holds.

Remark. If the condition D(C)D(B) of the first part of the
theorem is replaced by D(C) D(A), then we have, in (c), (B-- b)(A --a)f2
--X for all a, b satisfying Re(a)0, Re(b)0.

Proof of the first part. Multiplication of (1) by e-bt followed by
an integration with respect to t on (0, oo) yields

( 2 ) es(B--b)--(B + sC--b)-e s>=O,
whenever Re(b) 0.

Since, for sufficiently small sO, B+sC generates a contraction
semi-group by Hille-Yosida’s theorem. Differentiation of (2) with
respect to s ollowed by setting s=0 leads to

A(B-- b) -1 (B-- b)-A --(B-- b)-C(B b) -1

and hence, for Re(a) >0 and Re(b) >0,
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I y e X and
(4)
then

and hence, by (3)

Hence

(B-- b)-(A- a)- (A--a)-(B b)---(A--a)-(B b)-C(B b)-l(A-a)-.
x=(B--b)-(A--a)-y,

y--(A--a)(B--b)x

x (A a)-(B b)-(y Cx).

x eD((B-b)(A--a)) and (B--b)(A--a)x--(A--a)(B--b)x--Cx.
Thus we have x e D(AB) D(BA) 2 and (AB-BA)x Cx.

It is clear that any element x of 9 can be expressed in the form
(3) by letting y-(A--a)(B--b)x, and thus relation (b) holds.

Also, since y e X is arbitrary, then (A-a)(B-b)9-X and /2

=(B-b)-(A-a)-X. Since A and B are densely defined,/2 is dense
in X.

Proof of the second part. Let a0, b0 denote constants for which
Re(a0)0, Re(b0)0 and (A--ao)(B--bo)9 is dense in X. I x e/2 and
y- (A ao)(B-- b0)x, then by (b)

y-- (B-- bo)(A ao)X + Cx
and consequently

(B b0) -(n a0)-y x (A ao)-(B bo)-(Y Cx)
(A ao)-(B bo)-Y (A ao)-(B bo)-C(B bo)-(n ao)-y.

Since the y’s are dense, (3) holds when a-ao and b=bo.
Next, it will be shown that

(B-- b)-(A- a)- (n -a)-(B b)
( 5 )

_n(A_a)_(B_b)_C(B_b)_(n_a)_
holds or a-ao and b-bo and n= 1, 2, The assertion has already
been established or n-1. Now assume that (5) holds or a-ao and

b-bo and some n.
We put

M-(A--ao)- and N=(B--bo)-then

for all b, satisfying Re(b)0.
n=l, 2, ..

Since

MN +--N +M-(MN-NM)N +N(MN NM)
MNCNMNn +nNMNCNM
MNCN(NM+nMNnCNM)
+n(MN--MNCNM)NCNM
(n+ 1)MN +CNM.

In the last equality we use the fact that C commutes with R(b B)
Thus (5) holds or a-ao and b-b0 and
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(B-- b)-l= , (b--bo)-(B--bo)-k=l

and

(B--b)--, k(b--bo)-(B--bo)--it ollows from (5) or a=ao and b-bo that (3) holds or a-Co and

Ib-bol sufficiently small. Since (B-b)- is analytic or Re(b)0, then
(3) must hold for a=ao and Re(b)0.

An (n-1)-old differentiation o (when a= a0) (3) with respect to b
then shows that (5) holds or a-Co and Re(b)0. If (5) is multiplied
by (-b) and i b-nit (tO) then

(1- n-ltB)-n(A--a)-- (A --a)-1(1- n-liB)
+ t(A--a)-(1--n-tB)-C(1--n-tB)-(A--a)-

for a-- a0 and n0. But
s- lim (1 n-liB) etB

(Hille and Phillips [3], p. 362) and so
et(A-a)--(A--a)-et + t(A--a)-etC(A--a)-=(A--a)-et(A + tC--a)(A--a)- or a-Co, t>=O.
Here we remark that, since C commutes with R(a;A) for some

a satisfying Re(a))0 and D(C)D(A), {ec} commutes with {e}.
Thus the closure of A + tC generates a contraction semi-group

{Ts--eSAestc} or all t)0 by Trotter’s theorem [4]. It follows that

( 6 ) etB(A + tC--a)--(A--a)-e
or a a0, and hence

( 7 ) e,tB(A + tO- a)- (A a) etB (n-- 1, 2,
for a--Co, where A / tC is the closure o A / tC.

Using the power series representation or (A--a)- and
(A+tC-a)- near a-Co one concludes rom (7) (where a=a0) that (6)
holds or ]a-ao] sufficiently small and, by analytic continuation, or all
a satisfying Re(a)0. A differentiation o (6) with respect to a shows
that (7) holds also or Re(a)

If one multiplies both sides of (7) by (--a)n, let a=n/s where
s0, and then let n-c, one obtains eet=etetCe for all t__>0.
This completes the proof o the theorem.

Acknowledgment. The author wishes to express his cordial
thanks to Pro. S. Tsurumi and Pro. M. Hasegawa or their kind
advices.

[1]

References

Foias, C., L. Geher and B. Sz.-Nagy" On the permutability condition of
quantum mechanics. Acta Sci. Math. (Szeged), 21, 78-89 (1960).



176 H. SUZUKI [Vol. 47,

[2]

[3]

[4]

T. Kato" On the commutation relation AB--BA--c. Arch. for Rat. Mech.
and Anal., 10, 273-275 (1962).

E. Hille and R. S. Phillips: Functional Analysis. and Semi-Groups. Amer.
Math. Soc. Coll. Publ., Vol. 31 (1957).

H. F. Trotter: On the product of semi-groups of operators. Proc. Amer.
Math. Soc., 10, 545-551 (1959).


