40. On the Commutation Relation $\mathrm{AB}-\mathrm{BA}=\mathrm{C}$

By Hiroyuki Suzuki
Department of Mathematics, Tokyo Metropolitan University

(Comm. by Kinjirô Kunugı, m. J. A., Feb. 12, 1971)

We shall deal with commutation relation of the infinitesimal generators of strongly continuous semi-groups on a Banach space X.

A few general references for this work are Foias, C., L. Geher and B. Sz.-Nagy [1] and T. Kato [2]. The purpose of this paper is to obtain a generalization of T. Kato's theorem [2]. The proof of the theorem is similar to that of T. Kato's theorem.

The main theorem is as follows.
Theorem. Let $\left\{e^{s A}\right\}$ and $\left\{e^{t B}\right\}$ be two contraction semi-groups on a Banach space X satisfying the relation

$$
\begin{equation*}
e^{s A} e^{t B}=e^{t B} e^{t s C} e^{s A} \quad 0 \leqq s, t<\infty \tag{1}
\end{equation*}
$$

for some contraction semi-group $\left\{e^{u c}\right\}$ and suppose that $D(C) \supset D(B)$. Then
(a) $\quad \Omega=D(A B) \cap D(B A) \quad$ is dense in X
(b)
$(A B-B A) x=C x \quad$ for $x \in \Omega$
(c) $(A-a)(B-b) \Omega=X \quad$ for all a, b satisfying $\operatorname{Re}(a)>0, \operatorname{Re}(b)>0$.

Conversely, let C be the infinitesimal generator of a contraction semigroup. We suppose that $D(C) \supset D(A), D(C) \supset D(B)$ and C commutes with $R(a ; A)$ and $R(b ; B)$ for some pair a, b satisfying $\operatorname{Re}(a)>0$, $\operatorname{Re}(b)>0$, and that there exists a dense linear subset Ω of $D(A B)$ $\cap D(B A)$ for which (b) holds. Furthermore, if we suppose, for some pair a, b satisfying $\operatorname{Re}(a)>0, \operatorname{Re}(b)>0,(A-a)(B-b) \Omega$ is dense in X. Then (1) holds.

Remark. If the condition $D(C) \supset D(B)$ of the first part of the theorem is replaced by $D(C) \supset D(A)$, then we have, in $(c),(B-b)(A-a) \Omega$ $=X$ for all a, b satisfying $\operatorname{Re}(a)>0, \operatorname{Re}(b)>0$.

Proof of the first part. Multiplication of (1) by $e^{-b t}$ followed by an integration with respect to t on ($0, \infty$) yields

$$
\begin{equation*}
e^{s A}(B-b)^{-1}=(B+s C-b)^{-1} e^{s A} \quad s \geqq 0, \tag{2}
\end{equation*}
$$

whenever $\operatorname{Re}(b)>0$.
Since, for sufficiently small $s>0, B+s C$ generates a contraction semi-group by Hille-Yosida's theorem. Differentiation of (2) with respect to s followed by setting $s=0$ leads to

$$
A(B-b)^{-1} \supset(B-b)^{-1} A-(B-b)^{-1} C(B-b)^{-1}
$$

and hence, for $\operatorname{Re}(a)>0$ and $\operatorname{Re}(b)>0$,

$$
\begin{align*}
& (B-b)^{-1}(A-a)^{-1}=(A-a)^{-1}(B-b)^{-1} \\
& \quad-(A-a)^{-1}(B-b)^{-1} C(B-b)^{-1}(A-a)^{-1} \tag{3}
\end{align*}
$$

If $y \in X$ and

$$
\begin{equation*}
x=(B-b)^{-1}(A-a)^{-1} y \tag{4}
\end{equation*}
$$

then

$$
y=(A-a)(B-b) x
$$

and hence, by (3)

$$
x=(A-a)^{-1}(B-b)^{-1}(y-C x) .
$$

Hence

$$
x \in D((B-b)(A-a)) \quad \text { and } \quad(B-b)(A-a) x=(A-a)(B-b) x-C x
$$

Thus we have $x \in D(A B) \cap D(B A) \equiv \Omega$ and $(A B-B A) x=C x$.
It is clear that any element x of Ω can be expressed in the form (3) by letting $y=(A-a)(B-b) x$, and thus relation (b) holds.

Also, since $y \in X$ is arbitrary, then $(A-a)(B-b) \Omega=X$ and Ω $=(B-b)^{-1}(A-a)^{-1} X$. Since A and B are densely defined, Ω is dense in X.

Proof of the second part. Let a_{0}, b_{0} denote constants for which $\operatorname{Re}\left(a_{0}\right)>0, \operatorname{Re}\left(b_{0}\right)>0$ and $\left(A-a_{0}\right)\left(B-b_{0}\right) \Omega$ is dense in X. If $x \in \Omega$ and $y=\left(A-a_{0}\right)\left(B-b_{0}\right) x$, then by (b)

$$
y=\left(B-b_{0}\right)\left(A-a_{0}\right) x+C x
$$

and consequently

$$
\begin{aligned}
& \left(B-b_{0}\right)^{-1}\left(A-a_{0}\right)^{-1} y=x=\left(A-a_{0}\right)^{-1}\left(B-b_{0}\right)^{-1}(y-C x) \\
& \quad=\left(A-a_{0}\right)^{-1}\left(B-b_{0}\right)^{-1} y-\left(A-a_{0}\right)^{-1}\left(B-b_{0}\right)^{-1} C\left(B-b_{0}\right)^{-1}\left(A-a_{0}\right)^{-1} y
\end{aligned}
$$

Since the y 's are dense, (3) holds when $a=a_{0}$ and $b=b_{0}$.
Next, it will be shown that

$$
\begin{align*}
& (B-b)^{-n}(A-a)^{-1}=(A-a)^{-1}(B-b)^{-n} \tag{5}\\
& \quad-n(A-a)^{-1}(B-b)^{-n} C(B-b)^{-1}(A-a)^{-1}
\end{align*}
$$

holds for $a=a_{0}$ and $b=b_{0}$ and $n=1,2, \cdots$. The assertion has already been established for $n=1$. Now assume that (5) holds for $a=a_{0}$ and $b=b_{0}$ and some n.

We put

$$
M=\left(A-a_{0}\right)^{-1} \quad \text { and } \quad N=\left(B-b_{0}\right)^{-1}
$$

then

$$
\begin{aligned}
M N^{n+1}-N^{n+1} M= & (M N-N M) N^{n}+N\left(M N^{n}-N^{n} M\right) \\
= & M N C N M N^{n}+n N M N^{n} C N M \\
= & M N C N\left(N^{n} M+n M N^{n} C N M\right) \\
& +n(M N-M N C N M) N^{n} C N M \\
= & (n+1) M N^{n+1} C N M .
\end{aligned}
$$

In the last equality we use the fact that C commutes with $R(b ; B)$ for all b, satisfying $\operatorname{Re}(b)>0$. Thus (5) holds for $a=a_{0}$ and $b=b_{0}$ and $n=1,2, \cdots$.

Since

$$
(B-b)^{-1}=\sum_{k=1}^{\infty}\left(b-b_{0}\right)^{k-1}\left(B-b_{0}\right)^{-k}
$$

and

$$
(B-b)^{-2}=\sum_{k=1}^{\infty} k\left(b-b_{0}\right)^{k-1}\left(B-b_{0}\right)^{-k-1}
$$

it follows from (5) for $a=a_{0}$ and $b=b_{0}$ that (3) holds for $a=a_{0}$ and $\left|b-b_{0}\right|$ sufficiently small. Since $(B-b)^{-1}$ is analytic for $\operatorname{Re}(b)>0$, then (3) must hold for $a=a_{0}$ and $\operatorname{Re}(b)>0$.

An ($n-1$)-fold differentiation of (when $a=a_{0}$) (3) with respect to b then shows that (5) holds for $a=a_{0}$ and $\operatorname{Re}(b)>0$. If (5) is multiplied by $(-b)^{n}$ and if $b=n / t(t>0)$ then

$$
\begin{aligned}
& \left(1-n^{-1} t B\right)^{-n}(A-a)^{-1}=(A-a)^{-1}\left(1-n^{-1} t B\right)^{-n} \\
& \quad+t(A-a)^{-1}\left(1-n^{-1} t B\right)^{-n} C\left(1-n^{-1} t B\right)^{-1}(A-a)^{-1}
\end{aligned}
$$

for $a=a_{0}$ and $n>0$. But

$$
s-\lim _{n \rightarrow \infty}\left(1-n^{-1} t B\right)^{-n}=e^{t B}
$$

(Hille and Phillips [3], p. 362) and so

$$
\begin{aligned}
e^{t_{B}}(A-a)^{-1} & =(A-a)^{-1} e^{t B}+t(A-a)^{-1} e^{t B} C(A-a)^{-1} \\
& =(A-a)^{-1} e^{t_{B}}(A+t C-a)(A-a)^{-1} \quad \text { for } \quad a=a_{0}, \quad t \geqq 0 .
\end{aligned}
$$

Here we remark that, since C commutes with $R(a ; A)$ for some a satisfying $\operatorname{Re}(a)>0$ and $D(C) \supset D(A),\left\{e^{u C}\right\}$ commutes with $\left\{e^{s A}\right\}$.

Thus the closure of $A+t C$ generates a contraction semi-group $\left\{T_{s}=e^{s A} e^{s t C}\right\}$ for all $t>0$ by Trotter's theorem [4]. It follows that (6)

$$
e^{t B}(\overline{A+t C}-a)^{-1}=(A-a)^{-1} e^{t B}
$$

for $a=a_{0}$, and hence

$$
\begin{equation*}
e^{t B}(A+t C-a)^{-n}=(A-a)^{-n} e^{t B} \quad(n=1,2, \cdots) \tag{7}
\end{equation*}
$$

for $a=a_{0}$, where $\overline{A+t C}$ is the closure of $A+t C$.
Using the power series representation for $(A-a)^{-1}$ and $(\overline{A+t C}-a)^{-1}$ near $a=a_{0}$ one concludes from (7) (where $a=a_{0}$) that (6) holds for $\left|a-a_{0}\right|$ sufficiently small and, by analytic continuation, for all a satisfying $\operatorname{Re}(a)>0$. A differentiation of (6) with respect to a shows that (7) holds also for $\operatorname{Re}(a)>0$.

If one multiplies both sides of (7) by $(-a)^{n}$, let $a=n / s$ where $s>0$, and then let $n \rightarrow \infty$, one obtains $e^{s A} e^{t B}=e^{t B} e^{t s C} e^{s A}$ for all $t \geqq 0$. This completes the proof of the theorem.

Acknowledgment. The author wishes to express his cordial thanks to Prof. S. Tsurumi and Prof. M. Hasegawa for their kind advices.

References

[1] Foias, C., L. Geher and B. Sz.-Nagy: On the permutability condition of quantum mechanics. Acta Sci. Math. (Szeged), 21, 78-89 (1960).
[2] T. Kato: On the commutation relation $A B-B A=c$. Arch. for Rat. Mech. and Anal., 10, 273-275 (1962).
[3] E. Hille and R. S. Phillips: Functional Analysis and Semi-Groups. Amer. Math. Soc. Coll. Publ., Vol. 31 (1957).
[4] H. F. Trotter: On the product of semi-groups of operators. Proc. Amer. Math. Soc., 10, 545-551 (1959).

