106. An Operator-Valued Stochastic Integral

By D. KANNAN^{*)} and A. T. BHARUCHA-REID^{**)} Center for Research in Probability Wayne State University, Detroit, Michigan 48202 (Comm. by Kinjirô KUNUGI, M. J. A., May 12, 1971)

1. Introduction. In this paper we define a stochastic integral of the form

$$\int_{b}^{a} \xi(t,\omega) dw(t,\omega) \tag{1}$$

where $\xi(t, \omega)$ is a second order Hilbert space-valued random function and $w(t, \omega)$ is a Hilbert space-valued Brownian motion or Wiener process. The stochastic integral to be defined is operator-valued; in particular, it is a function from a probability space into the space of Schmidt class operators on a Hilbert space. Hilbert space-valued stochastic integrals of operator-valued functions have been studied by several authors (cf., Mandrekar and Salehi [7], and Vakhaniya and Kandelski [10]). We first introduce some definitions and concepts which will be used in the development of the integral.

Let $(\Omega, \mathcal{A}, \mu)$ be a complete probability space, and let \mathfrak{F} be a real separable Hilbert space with inner product $\langle \cdot, \cdot \rangle$. A mapping $x: \Omega \to \mathfrak{F}$ is said to be a random element in \mathfrak{F} , or an \mathfrak{F} -valued random variable, if for each $y \in \mathfrak{F}, \langle x(\omega), y \rangle$ is a real-valued random variable. Similarly, a mapping $L: \Omega \to \mathcal{B}(\mathfrak{F})$ (where $\mathcal{B}(\mathfrak{F})$ is the Banach algebra of endomorphisms of \mathfrak{F}) is said to be a random operator if, for every $x, y \in \mathfrak{F}, \langle L(\omega)x, y \rangle$ is a real-valued random variable.

Let x and y be two given elements in §. The tensor product of x and y, written $x \otimes y$, is an endomorphism in § whose defining equation is $(x \otimes y)h = \langle h, y \rangle x, h \in$. A simple consequence of this definition is $(x_1 \otimes y_1)(x_2 \otimes y_2) = \langle x_2, y_1 \rangle \langle x_1 \otimes y_2 \rangle$. We refer to Schattan [8] for a discussion of the operator $x \otimes y$ and its properties. Now let $x(\omega)$ and $y(\omega)$ be two §-valued random variables; and consider the tensor product $x(\omega) \otimes y(\omega)$. Falb [3] (cf. also [5]) has shown that the operator-valued function $x(\omega) \otimes y(\omega)$ is measurable; i.e., it is a random operator. Falb established the measurability of $x(\omega) \otimes y(\omega)$ using open sets; however, it follows easily from the definitions of a random operator and the tensor product operator.

An \mathcal{G} -valued random function $\{w(t, \omega), t \in [a, b]\}$ is said to be a

^{*)} Present address: Department of Mathematics, New York University, University Heights, Bronx, New York 10453.

^{**)} Research supported by National Science Foundation Grant No. GP-13741.

Brownian motion or Wiener process in § if (i) $\mathcal{E}\{w(t,\omega)\}=0$ for all $t \in [a, b]$, (ii) the increments of $w(t, \omega)$ over disjoint intervals are independent, (iii) $w(t, \omega)$ is a.s. continuous as a function of t, (iv) $\mathcal{E}\{||w(t, \omega) - w(s, \omega)||_{\mathfrak{S}}^2\} = \mathcal{E}\{\langle w(t, \omega) - w(s, \omega), w(t, \omega) - w(s, \omega) \rangle\} = |t - s|$, and (v) $\mathcal{E}\{\langle w(t_2, \omega) - w(s_2, \omega), U(w(t_1, \omega) - w(s_1, \omega)) \rangle\} = 0$ for $s_1 < t_1 \le s_2 < t_2$, and $U \in \mathcal{B}(\mathfrak{S})$.

A random function $\hat{\xi}(t,\omega) \in \mathfrak{F}$ is said to be *nonanticipative* of the process $w(t,\omega)$ if, for $r,s,t \in [a,b], r \leq s \leq t, \hat{\xi}(r,\omega)$ and $w(t,\omega) - w(s,\omega)$ are independent. Let H denote the Hilbert space of the equivalence classes of second order random functions $\hat{\xi}(t,\omega)$; that is for every $t \in [a,b], \hat{\xi}(t,\omega)$ is a second order random element in \mathfrak{F} . The norm in H is $\|\hat{\xi}\|_{H} = \left(\int_{a}^{b} \mathcal{E}\{\|\hat{\xi}(t,\omega)\|_{\mathfrak{F}}^{2}\}dt\right)^{1/2}$. We remark that the class of all random functions in H nonanticipative of $w(t,\omega)$ is a linear manifold; and we denote its closure by H_{w} . Also, the set of all simple random functions nonanticipative of $w(t,\omega)$ is dense in H_{w} .

Finally, we need the notion of an operator of Schmidt class (cf., Dunford and Schwartz [2]). An operator A on \mathfrak{F} is said to be a *Schmidt* class operator if, for a complete orthonormal sequence $\{e_i\}$ in $\mathfrak{F}, \|A\|_r^{p} = \sum_{i=1}^{\infty} \|Ae_i\|^2 < \infty$. The collection $[\sigma c]$ of Schmidt class operators is a Hilbert space with inner product $(A \mid B) = \sum_{i=1}^{\infty} \langle Ae_i, Be_i \rangle$ and norm $\|\cdot\|_s$, the so-called Schmidt norm.

2. Definition of the integral. Some properties. In defining the stochastic integral, and in the study of its properties, we restrict our attention to random functions $\xi(t, \omega)$ in H_w . We first define the integral for simple random functions, and then extend it to all random functions in H_w .

Let $\xi(t, \omega)$ be a simple random function; that is, if $a=t_0 < t_1 < \cdots < t_{n-1} < t_n = b$, then

$$\hat{\xi}(t, \omega) = egin{cases} \hat{\xi}(t_i, \omega), t \in [t_i, t_{i+1}) \ 0, \quad ext{otherwise.} \end{cases}$$

For a simple random function $\xi(t, \omega)$ the integral is defined by

$$\int_{a}^{b} \xi(t,\omega) dw(t,\omega) = \sum_{i=0}^{n-1} \xi(t_i,\omega) \otimes [w(t_{i+1},\omega) - w(t_i,\omega)].$$
(2)

Let $I(\omega)$ denote the integral defined by (2). Clearly $I: \Omega \to [\sigma c]$; and $I(\omega)$ is a random operator of Schmidt class on §. Using elementary properties of the tensor product operator defined earlier, and properties of the processes $\xi(t, \omega)$ and $w(t, \omega)$, we obtain the following result for the integral defined by (2).

Lemma 1. (i) For any two real numbers α_1 and α_2 , and for simple random functions $\xi_1(t, \omega)$ and $\xi_2(t, \omega)$, we have

$$\int_a^b [\alpha_1 \hat{\xi}_1(t, \omega) + \alpha_2 \hat{\xi}_2(t, \omega)] dw(t, \omega)$$

No. 5]

$$=\alpha_1\int_a^b\xi_1(t,\,\omega)dw(t,\,\omega)+\alpha_2\int_a^b\xi_2(t,\,\omega)dw(t,\,\omega).$$

(ii) For a simple random function $\xi(t, \omega) \in H_w$, $\xi\{I(\omega)\}=0$, in the sense that $\langle \mathcal{E}\{I(\omega)\}x, y\rangle=0$ for every $x, y \in \mathfrak{F}$.

(iii) For a simple random function $\xi(t, \omega) \in H_w$,

$$\mathcal{E}\left\{\left\|\int_{a}^{b}\xi(t,\omega)dw(t,\omega)\right\|_{\sigma}^{2}\right\}=\left\|\xi(t,\omega)\right\|_{H}^{2}$$

(iv) For any
$$U \in \mathcal{B}(\mathfrak{H})$$
 and any simple random function $\xi(t, \omega) \in H_w$,

$$\int_{a}^{b} U\xi(t,\omega)dw(t,\omega) = U \int_{a}^{b} \xi(t,\omega)dw(t,\omega).$$
(v) Tr $[I(w)] = \sum_{i=0}^{n-1} \langle \xi(t_{i},\omega), w(t_{i+1},\omega) - w(t_{i},\omega) \rangle$, and $\mathcal{E}\{\text{Tr} [I(\omega)]\}$

= 0.

Using (iii) of the above lemma, together with the following result, definition (2) can be extended to all $\xi(t, \omega) \in H_w$.

Lemma 2. Let $\{\xi_n(t, \omega)\}$ be a Cauchy sequence of simple random functions in H_w . Then the corresponding integrals $\{I_n\}$ form a Cauchy sequence in $L_2(\Omega, [\sigma c])$.

Let $\xi(t, \omega) \in H_w$. Then there exists a sequence $\xi_n(t, \omega)$ of simple random functions converging to $\xi(t, \omega)$ in H_w . Corresponding to $\{\xi_n(t, \omega)\}$, the integrals $I_n(\omega) = \int_a^b \xi_n(t, \omega) dw(t, \omega)$ form a Cauchy sequence in the Hilbert space $L_2(\Omega, [\sigma c])$. Thus, using the $L_2(\Omega, [\sigma c])$ convergence, the integral $\int_a^b \xi(t, \omega) dw(t, \omega)$, for all $\xi(t, \omega) \in H_w$, is defined by

$$\int_{a}^{b} \xi(t,\omega) dw(t,\omega) = \lim_{n \to \infty} \int_{a}^{b} \xi_{n}(t,\omega) dw(t,\omega).$$
(3)

Property (iii) of Lemma 1 defined an isometry from the simple random functions into $L_2(\Omega, [\sigma c])$; and since the simple random functions are dense in H_w , the mapping $\xi \rightarrow \int_a^b \xi dw$ extends by continuity to an isometry. Thus the definition of the stochastic integral can be formulated as follows:

Theorem 1. There is a unique isometric operator from H_w into $L_2(\Omega, [\sigma c])$, denoted by

$$\xi(t,\omega) \rightarrow \int_a^b \xi(t,\omega) dw(t,\omega).$$

The above result states that property (iii) of Lemma 1 holds for any $\hat{\xi}(t,\omega) \in H_w$. By passing to the limit, properties (i) and (ii) of Lemma 1 also hold for any $\hat{\xi}(t,\omega) \in H_w$.

Now, consider the operator-valued process $m(t, \omega)$ defined by

$$m(t,\omega) = \int_{a}^{t} \xi(t,\omega) dw(t,\omega), \qquad t \ge a.$$
(4)

[Vol. 47,

No. 5]

We state the following result, which is an analogue of a well-known property of the Itô-Doob integral (cf., Doob [1], p. 444).

Theorem 2. If $\xi(t, \omega) \in H_w$, then the process $m(t, \omega)$ defined by (4) is an operator-valued martingale.

3. The covariance operator of the integral. Consider the measurable space $(\mathfrak{H}, \mathfrak{B})$ where \mathfrak{H} is a real separable Hilbert space and \mathfrak{B} is the σ -algebra of Borel subsets of \mathfrak{H} . Let $x(\omega)$ denote a \mathfrak{H} -valued random variable; and let ν_x denote the probability measure on \mathfrak{H} induced by μ and x, that is $\nu_x = \mu \circ x^{-1}$, or $\nu_x(B) = \mu(x^{-1}(B))$ for all $B \in \mathfrak{B}$. Let $M(\mathfrak{H})$ denote the space of all probability measures on \mathfrak{H} ; and let $\nu \in M(\mathfrak{H})$ be such that $\mathcal{E}_{\nu}\{\|x\|^2\} = \int \|x\|^2 d\nu < \infty$. Then the covariance operator S of defined by the equation

$$\langle Sg, g \rangle = \int \langle f, g \rangle^2 d\nu(f)$$
 (5)

(cf. Grenander [4], Chap. 6).

As a random element in $[\sigma c]$, the integral $I(\omega)$ induces a probability measure ν_I on the measurable space $([\sigma c], \mathcal{F})$, where \mathcal{F} is the σ -algebra of Borel subsets of $[\sigma c]$; and $\nu_I = \mu \circ I^{-1}$. Now, if $\nu_I \in M([\sigma c])$ is such that $\int ||x||^2 d\nu_I < \infty$; then it follows from (5) that the covariance operator S_I of the integral $I(\omega)$ is defined by

$$\langle S_I x, x \rangle = \int \langle y, x \rangle^2 d\nu_I(y)$$
 (6)

The Hilbert space $L_2(\Omega, [\sigma c])$ is the tensor product of $L_2(\Omega)$ and $[\sigma c]$; that is $L_2(\Omega, [\sigma c]) = L_2(\Omega) \hat{\otimes} [\sigma c]$ (cf., Umegaki and Bharucha-Reid [9]). Using tensor product methods, the authors [6] have obtained several representation theorems for covariance operators, which when applied to S_I give the following results.

Theorem 3. The covariance operator S_I of the stochastic integral $I(\omega)$ admits the representation

$$(S_I A | B) = \int_{\mathcal{B}} \operatorname{Tr} \left[(I(\omega) \otimes I(\omega)) (A \otimes B) \right] d\mu,$$

where $A, B \in [\sigma c]$.

Theorem 4. If $I(\omega) \in L_2(\Omega) \otimes [\sigma c]$ (the algebraic tensor product of $L_2(\Omega)$ and $[\sigma c]$), then S_I admits the representation

$$(S_{I}A | A) = \sum_{i=1}^{m} \sum_{j=1}^{n} (x_{i}(\omega), y_{i}(\omega))(A_{i} | A)(A | A_{j}),$$

where $A \in [\sigma c]$, (\cdot, \cdot) is the inner product in $L_2(\Omega)$, and $I(\omega) = \sum_{i=1}^m x_i(\omega)$ $\otimes A_i = \sum_{i=1}^m x_i(\omega) A_i$, with $x_i \in L_2(\Omega)$, $A_i \in [\sigma c]$, $l \leq i \leq m$.

References

- [1] J. L. Doob: Stochastic Processes. John Wiley and Sons, New York (1953).
- [2] N. Dunford and J. T. Schwartz: Linear Operators, Part II. Spectral Theory. John Wiley and Sons (Interscience), New York (1963).
- [3] P. L. Falb: Infinite-dimensional filtering: The Kalman-Bucy filter in Hilbert space. Information and Control, 11, 102-137 (1967).
- [4] U. Grenander: Probabilities on Algebraic Structures. John Wiley and Sons, New York (1963).
- [5] R. Kalman, et al.: Topics in Mathematical Systems Theory. McGraw-Hill, New York (1969).
- [6] D. Kannan and A. T. Bharucha-Reid: Note on covariance operators of probability measures on a Hilbert space. Proc. Japan Acad., 46, 124–129 (1970).
- [7] V. Mandrekar and H. Salehi: The square-integrability of operator-valued functions with respect to a non-negative operator-valued measure and the Kolmogorov isomorphism theorem. Indiana Univ., Math. J., 20, 545-563 (1970).
- [8] R. Schattan: Norm Ideals of Completely Continuous Operators. Springer-Verlag (1960).
- [9] H. Umegaki and A. T. Bharucha-Reid: Banach space-valued random variables and tensor products of Banach spaces. J. Math. Anal., Appl., 31, 49-67 (1970).
- [10] N. N. Vakhaniya and N. P. Kandelski: A stochastic integral for operatorvalued functions (in Russian). Teor. Verojatnost. i Primenen., 12, 582– 585 (1967).