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106. A Operator.Valued Stochastic Integral

By D. KANNAN*) and A. T. BHARUCttA-REID**)

Center for Research in Probability
Wayne State University, Detroit, Michigan 48202

(Comm. by Kinjir.5 KUNUGI, M. J. A., May 12, 1971)

1. Introduction. In this paper we define a stochastic integral of
the form

$(t, w)dw(t, w) (1)

where $(t, w) is a second order Hilbert space-valued random unction
and w(t, w) is a Hilbert space-valued Brownian motion or Wiener
process. The stochastic integral to be defined is operator-valued; in
particular, it is a function rom a probability space into the space of
Schmidt class operators on a Hilbert space. Hilbert space-valued
stochastic integrals of operator-valued functions have been studied by
several authors (cf., Mandrekar and Salehi [7], and Vakhaniya and
Kandelski [10]). We first introduce some definitions and concepts which
will be used in the development of the integral.

Let (/2, ,/) be a complete probability space, and let be a real
separable Hilbert space with inner product (.,.}. A mapping x:9

is said to be a random element in , or an -valued random vari-
able, if for each y e , (x(w), y} is a real-valued random variable.
Similarly, a mapping L: tg() (where _() is the Banach algebra
o endomorphisms of 2) is said to be a random operator i, for every
x, y e , (L(w)x, y} is a real-valued random variable.

Let x and y be two given elements in . The tensor product of x
and y, written x(R)y, is an endomorphism in whose defining equation
is (x(R)y)h=(h, y}x, h e . A simple consequence of this definition is
(x(R)y)(x(R)y)= (x, y}(x(R)y). We refer to Schattan [8] or a discus-
sion of the operator x(R)y and its properties. Now let x(w) and y(w)
be two -valued random variables; and consider the tensor product
x(w)(R)y(w). Falb [3] (cf. also [5]) has shown that the operator-valued
function x(w)(R)y(w) is measurable; i.e., it is a random operator. Falb
established the measurability of x(w)(R)y(w) using open sets; however,
it ollows easily rom the definitions of a random operator and the
tensor product operator.

An -valued random function {w(t, w), t e [a, b]} is said to be a
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Brownian motion or Wiener process in if (i) {w(t, w)}-O or all
t e [a, b], (ii) the increments of w(t, (o) over disjoint intervals are inde-
pendent, (iii) w(t, ) is a.s. continuous as a unction of t, (iv) {]w(t,
--w(s, w) l} {<w(t, w) w(s, w), w(t, w) w(s, w)}}= It- s, and (v)
{(w(t, w)--w(s, ), U(w(t, w)-w(s, w))}}=O or stst, and
U e ().

A random unction (t, w) e is said to be nonanticipative o the
process w(t, w) if, or r, s, t e [a, b], r s t, $(r, w) and w(t, w)- w(s, w)
are independent. Let H denote the Hilbert space of the equivalence
classes of second order random unctions (t, w); that is for every
t e [a, b], (t, w) is a second order random element in . The norm in

H is - {(t, )}dt We remark that the class of all

random functions in H nonantieiative of (t, m) is a linear manifold;
and we denote its closure by H. Also, the set of all simle random
functions nonantieipative of (t, ) is dense in H.

inally, we need the notion of an oerator of Sehmidt class (el.,
Dunford and Sehwart [2]). An oerator A on is said to be a
class operator if, or a complete orthonormal sequence {e} in
==]]Ae]]. The collection [ac] o Schmidt class operators is
Hilbert space with inner product (A]B) = (Ae, Be} and norm [. [,
the so-called Schmidt norm.

2. Definition of the integral. Some properties. In defining the
stochastic integral, and in the study of its properties, we restrict our
attention to random unctions $(t, w) in H. We first define the integrM
or simple random unctions, and then extend it to all random
functions in H.

Let $(t, w) be a simple random 2unction that is, if a=tot...
t_t-b, then

$(t, w)= $(t, ), t e Its,
0, otherwise.

For a simple random unction $(t, w) the integral is defined by

(t, )d(t, )= (t, )[(t., )-(t, )]. ( 2 )

et I() denote the integral defined by (2). Clearly I" D[e]; and
I(m) is a random oerator of Sehmid class on . Using elementary
properties of the tensor produe oerator defined earlier, and properties
of the processes (t, ) and (t, ), we obtain the following resul for
the integral defined by (2).

Lemma 1. (i) Po two eal mbe , d o
imle gom etio t(t, ) (t, ), e have
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a $(t, w)dw(t, )+ $(t, w)dw(t, ).

(ii) For a simple random function (t, ) e H, ${I(w)}--0, in the
sense that (’{I(w)}x, y}-O for every x, y e .

(iii) For a simple random function (t, ) e H,

(iv) For any Ue() and any simple random function (t, w) eH,

(v) r [I(w)l ((t, oo), w(t/, oo)-w(t, oo)), d 6’{r
i--0

Using (iii) of the above lemma, together with the following result,
definition (2) can be extended to all $(t, w) e H.

Lemma 2. Let ($(t, w)} be a Cauchy sequence of simple random
functions in H. Then the corresponding integrals {I} form a Cauchy
sequence in L(t, [ac]).

Let (t, w) e H. Then there exists a sequence (t, w) of simple
random functions converging to $(t, w) in H. Corresponding to

{(t,w)}, the integrals L,(w)=.[..(t,w)dw(t,w)form a Cauchy

sequence in the Hilbert space L(/2, [ac]). Thus, using the L(t, [ac])

the integral .[.. (t, w)dw(t, w),, for all (t, w) e H, is de-convergence,

fined by

Ja Ja

Property (iii) of Lemma 1 defined an isometry from the simple random
functions into L(tg, [ac]) and since the simple random functions are

dense in H,, the mapping dw extends by continuity to an iso-

merry. Thus the definition of the stochastic integral can be formulated
as follows:

Theorem 1. There is a unique isometric operator from H into
L(tg, [ac]), denoted by

(t, w)-(t, w)dw(t, w).

The above result states that property (iii) of Lemma 1 holds or
any $(t, w)e H. By passing to the limit, properties (i) and (ii) of
Lemma 1 also hold for any $(t, (o)e H.

Now, consider the operator-valued process re(t, w) defined by

m(t, w)=(t, w)dw(t, w), t>_a. (4)
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We state the ollowing result, which is an analogue of a well-known
property of the ItS-Doob integral (cf., Doob [1], p. 444).

Theorem 2. If (t, w) H, then the process m(t, w) defined by
(4) is an operator-valued martingale.

3 The covariance operator of the integral. Consider the
measurable space (, _) where is a real separable Hilbert space and
_

is the a-algebra of Borel subsets of . Let x(w) denote a -valued
random variable; and let denote the probability measure on in-
duced by/ and x, that is =/ox-, or (B)=/(x-(B)) for all B e _.
Let M() denote the space of all probability measures on ; and let

e M() be such that {11 x }-.[11 x d < c. Then the covariance

operator S of defined by the equation

(Sg, g}-.[(f g}d,(f) ( 5 )

(cf. Grenander [4], Chap. 6).
As a random element in [ac], the integral I(w) induces a probability

measure on the measurable space ([ac], ), where is the a-algebra
of Borel subsets of [ac] and =/oI-. Now, if e M([ac]) is such that

then it follows from (5) that the covariance operator S
o the integral I(w) is defined by

(Sx, x} =.[(y, x}dz(y) ( 6 )

The Hilbert space L.(9, [a c]) is the tensor product o L.(9) and
[ac]; that is L.(9, [ac])=L.(9)[ac] (cf., Umegaki and Bharucha-Reid
[9]). Using tensor product methods, the authors [6] have obtained
several representation theorems or covariance operators, which when
applied to S give the following results.

Theorem :. The covariance operator Sz of the stochastic integral
I(w) admits the representation

(SA B)= Tr [(I(w)(R)I(w))(A(R)B)]d[,

where A, B e [ac].
Theorem 4. If I(w) e L2(t)(R)[ac] (the algebraic tensor product of

L.([2) and [ac]), then Sx admits the representation

(SA ]A)-, (x(w), y(o))(A’I A)(A ]A),
I=1 ,=1

where A e [ac], (., .) is the inner product in L([2), and I((o) ?__ x(o)
(R)A==x(eo)A, with x e L(t),A e [ac], l<im.
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