97. On the Relation between the Positive Definite Quadratic Forms with the Same Representation Numbers

By Yoshiyuki KITAOKA Nagoya University

(Comm. by Kenjiro SHODA, M.J.A., May 12, 1971)

1. In this note we investigate the relation between the positive definite integral quadratic forms with the same representation numbers.

2. A positive definite $n \times n$ matrix $A = (a_{ij})$ is called even positive if all a_{ij} are integers and all a_{ii} are even integers; then we put $\vartheta(\tau, A) = \sum_{\substack{\xi \in \mathbb{Z}^n}} e^{\pi i A[\xi]\tau}$.

For an even positive $2k \times 2k$ matrix A we define the level of A by the smallest natural number N such that NA^{-1} is also even positive; then N divides det A and det A divides N^{2k} .

2a g

An even positive ternary matrix $\begin{pmatrix} g & 2b & e \\ f & e & 2c \end{pmatrix}$, which is denoted by

[a, b, c, e, f, g] for brevity, is called reduced in the sense of Seeber and Eisenstein if the following conditions are satisfied:

1) e, f, g are all positive or all non-positive.

2) $a \le b \le c, a+b+e+f+g \ge 0.$

3) $|f| \le a, |g| \le a, |e| \le b.$

4) If a=b, $|e| \le |f|$; if b=c, $|f| \le |g|$; if a+b+e+f+g=0, $2a+2f+g \le 0$.

5) For $e, f, g \le 0$: if a = -g, f = 0; if a = -f, g = 0; if b = -e, g = 0.

6) For e, f, g > 0: if $a = g, f \le 2e$; if $a = f, g \le 2e$; if $b = e, g \le 2f$.

We say that two matrices A, B are equivalent if $A = {}^{t}TBT$ holds for some integral matrix T with determinant ± 1 .

3. Theorem 1. Assume that $\vartheta(\tau, A) = \vartheta(\tau, B)$ holds for two even positive matrices A, B. Then the following assertions i), ii), iii) and iv) are true.

i) There exists a matrix T with rational numbers as entries such that ${}^{t}TAT = B$ holds.

ii) In case that A is $2k \times 2k$ matrix, A and B belong to the same genus if the level N of A is odd or $N \equiv 2 \mod 4$.

iii) In case that A is $(2k+1) \times (2k+1)$ matrix, A and B belong to the same genus if det $A = 2^t r$ holds, where $t \le 4$ and r is odd.

iv) If A is $n \times n$ matrix with $n \le 4$, A and B always belong to the same genus.

It is likely that for two even positive matrices A, B, A and B always belong to the same genus if only $\vartheta(\tau, A) = \vartheta(\tau, B)$ holds, and that i) is also true for (real) positive matrices A, B.

As an application of the method of the proof of Theorem 1 we obtain

Theorem 2. Assume that A and B are even positive $n \times n$ matrices with det $A = \det B$. Then A and B belong to the same genus if the level of A is equal to the level of B and its value is 1 or a prime integer in case of even n, and det A = 2p in case of odd n, where p is 1 or an odd prime integer.

Theorem 3. For two even positive ternary matrices A, B, A and B are equivalent if $\vartheta(\tau, A) = \vartheta(\tau, B)$ and at least one of the following conditions hold.

i) $\vartheta(\tau, A)$ has the Fourier expansion $1 + a_1 e^{2\pi i \tau} + \cdots$ with $a_1 \neq 0$.

ii) A is a diagonal matrix. (B is not necessarily diagonal.)

iii) A = [a, b, c, e, f, g] is a reduced matrix in the sense of Seeber and Eisenstein with a+b < c, $b \ge 4a$ and $|e| \le b/2$.

iv) A = [a, b, c, e, f, g] is a reduced matrix in the sense of Seeber and Eisenstein and B = [a', b', c', e', f', g'] is also reduced in the sense of Seeber and Eisenstein with a' + b' < c', $b' \ge 2a'$ and either e, e' > 0or $e, e' \le 0$.

There is an example of even positive matrices A, B with 16 variables which are not equivalent, although $\vartheta(\tau, A) = \vartheta(\tau, B)$ holds (Witt). But it is always true in the binary case that $\vartheta(\tau, A) = \vartheta(\tau, B)$ implies the equivalence of A and B. This seems to be true also in the ternary case (even the quaternary real positive case).

The proof of Theorems 1, 2 are based on the theorem of Minkowski (p.p. 136-142 of [1]) and the following formula

$$\lim_{\tau \to i\infty} (c\tau + d)^{-(n/2)} \vartheta\left(\frac{a\tau + b}{c\tau + d}, A\right)$$
$$= e^{-(\pi i/4)} c^{-(n/2)} \sqrt{\det A}^{-1} \sum_{\substack{\xi \mod c}} e^{\pi i (a/c) A[\xi]}$$

for any $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $SL(2, \mathbb{Z})$ with c > 0.

In the proof of Theorem 1, it is shown that a genus for an even positive $n \times n$ matrix $(n \le 4)$ is completely determined by the determinant and Gaussian sums $\sum_{\text{fmod } c} e^{\pi i (a/c) A[\xi]}$ (a and $c(\neq 0)$ run over all integers). But this is not true for $n \ge 5$. For example

2	/1	0	0	0	0 \		2	(1)	0	0	0	0)	
	0	1	0	0	0			0	2	0	0	0	
	0	0	2	0	0	\mathbf{and}		0	0	4	0	0	
	0	0	0	4	0			0	0	0	4	2	
	0	0	0	0	28)			0	0	0	2	8)	

have the same determinant and Gaussian sums, but A and B do not belong to the same genus.

Remark. The *m*-th coefficient in the Fourier expansion (with respect to $e^{2\pi i\tau}$) of $\vartheta(\tau, A)$ is the number of the vectors in the lattice \mathbb{Z}^n in \mathbb{R}^n which have the distance *m* from the origin with respect to the metric $(x, y) = (1/2)^i x A y$.

Detailed proof will appear elsewhere.

Reference

 [1] H. Minkowski: Grundlagen f
ür eine Theorie der quadratischen Formen mit ganzzahligen Koeffizienten, Gesammelte Abhandlungen 1. Leipzig, 3-144 (1911).