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The generalized decomposition numbers of the symmetric group
are rational integers ([5], [13]), but those of the alternating group are
not necessarily rational integers ([5]). The main purpose of this paper
is to give a proof of the ollowing theorem ([4]).

Theorem 1. The generalized decomposition numbers of the
alternating group for p--2 are rational integers.

Throughout this paper, we consider the representations of groups
over the algebraically closed field of characteristic 2. Let x be a 2-
element of the alternating group A, and let N(x) be the normalizer
of x in A. In section 2 we shall prove that every 2-block B* of N(x)
is characterized by a 2-core [a0], and then B* with the 2-core [a0] deter-
mines the 2-block B of A with the same 2-core [a0].

1. The generalized symmetric group S(a, 29 is the semi-direct
product of the normal subgroup Qt of order (2) and the subgroup S*
which is isomorphic to the symmetric group S([9])
(1.1) S(a,2)-S*Q, S*Q--1, S*-S.
Evidently we have S(ao, 1)=So. Since S(a,2)/Q-S, we see that
every modular irreducible character o S(a, 2) is given by the modular
irreducible character of S.

Let G be a subgroup of the symmetric group Sn and let us denote
by G+ the subgroup GA of G. Then we have G=G/ or (G: G/)=2.
Since (Q: Q)=2 for i0, we see that
(1.2) S(at, 2i) + -=S*Q?.

Let y be an arbitrary 2-regular element of S(a, 2). Then y is the
even permutation and hence y e S(a, 2)/. It follows from S(a, 2)//Q
S that every representation of S(a, 20 / obtained by restricting the
modular irreducible representation of S(a, 2) remains irreducible. If
we denote by (f (- 1, 2, ., m) the modular irreducible characters of
S, then the modular irreducible characters of S(a, 2) and S(a, 2)/

are also given by (f(y). This implies that the representation of
S(a, 29 induced from the indecomposable constituent U of the regular
representation of S(a, 2) / is the indecomposable constituent of the
regular representation of S(a, 2) ([8]) and hence if we denote by , and
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c, the Cartan invariants of S(a,, 20 and S(a,, 20 / respectively, then
(1.3) ,=2c,.

It ollows from (1.3) that two characters 9(y) and 9(y) of S(a,, 20 /

belong to the same 2-block, if and only if (;(y) and 9(y) of S(a,, 20 be-
long to the same 2-block.

Let x :/= 1 be a 2-element of A which consists of a, cycles of length
2 (0=<ig l, a,>__ 0). Denote by N(x) the normalizer of x in Sn. Then
N(x)=N(x) A is the normalizer of x in An. We have ([13])
(1.4) N(x)=S(ao, 1) S(a, 2) ... S(a, 20
and every modular irreducible character 9 of N(x) is the product of
the modular irreducible characters 9’ of S,"
(1.5) 9-991 9.

If ao-0, then
N(x) N(x)S(a, 2) + S(a, 2) / S(a,, 20 /.

Hence we see easily that every modular irreducible character of
Na(x) is given by
(1.6) =92.. .

If a0:/=0, then N(x)--So T where
T--S(a, 2) S(a, 20 S(a,, 20

and we have
N(x)--Ao T+ +(Ao T+)st

where s and t denote the odd permutations of S and T respectively.
We see from st e N(x) that two 2-regular elements which are conjugate
in S0 are also conjugate in N(x). This implies that every represen-
tation of Na(x) obtained by restricting the modular irreducible repre-
sentation of So remains irreducible. Hence we see that every modular
irreducible character of N(x) is given by (1.5). Consequently, for

0<=a0 <n every modular irreducible character of N(x) is given by (1.5)
and the matrix # of the modular irreducible characters of N(x) is the
Kronecker product of the matrices , of the modular irreducible
characters 9 of S"
(1.7) -0x,x x.

Let y be a 2-regular element of A such that xy-----yx. Then we
have the following lemma (cf. [13]).

Lemma 1. Le x=/= 1 be a 2-elemen$ of A. Then the modular ir-
reducible characters 9"(Y) of N(x) are rational integers.

Now we shall give the proof of Theorem 1. Let y0--1, y, ..., y_
be a complete system of representatives or the 2-regular elements in

N(x) such that they all lie in different classes of N(x) but that every
2-regular element in N(x) is conjugate to one of them. Then the xy
(]--0, 1, ..., r--l) constitute a complete system o representatives for
the classes o A which contain an element whose 2-factor is conjugate
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to x in A. We denote by 0=1, , ...,
_

the irreducible characters
of A in the field of complex numbers and set
(1.8) Zx=((xy#)).

If x1, then the (xy#) are rational integers. It follows from
(1.9) Zx--D
where D (d) is the matrix of the generalized decomposition numbers
d of A that
(1.10) D=Z(x)-1.
This, combined with Lemma 1, yields that the d are rational numbers.
Since the d are algebraic integers, we see that the d are rational in-
tegers.

As an example we shall calculate the d of A or p--2 and x--(45)
(67) (cf. [5]). Since

Nx((45)(67)) S(3, 1) / S(2, 2) / + (S(3, 1) / x S(2, 2) /)(12)(45),
we have by (1.7)

2
Since y0 1, y-(123), we obtain

1 1

-1

. --1

--.

1
2

--1

and hence D- 1

0

0

0
O.
1
1

-I
-I

2. Let U be an indecomposable constituent of the regular repre-
sentation o Nx(x) and let U be the representation o N(x) induced
from U. Then we see that U is the indecomposable constituent of the
regular representation o N(x). Let us denote by , and c the Cartan
invariants o N(x) and N(x) respectively. We then obtain
(2.1) --2c.

We have by (2.1) the ollowing

Lemma 2. Two characters q and qZ of N(x) belong to the same
2-bloclc, if and only if q and q of N(x) belong to the same 2-block.

Lemma :. Let _
be two modular irreducible characters of N(x). Then and q be-
long to the same 2-block, if and only if Oo and Oo of Sao belong to
the same 2-block.
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Proof. For i0, S(a, 20 has only one block ([12], Lemma 10).
Combining this with Lemma 2, we obtain the proof of Lemma 3.

Let us denote by B the 2-block of So which contains the character
0o and by [0] the 2-core of B. By Lemma 3, we may call [0] the 2-
core of the 2-block B which contains the character y.

Lemma 2, combined with [(13), Theorem 2], gives the following
Theorem 2. Let [q0] be the 2-core of the 2-block B of N(x).

Then B determines the 2-block Be of An with the same 2-core [q0]"
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