167. On the Generalized Decomposition Numbers of the Alternating Group

By Masaru OSIMA Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kenjiro SHODA, M. J. A., Dec. 13, 1971)

The generalized decomposition numbers of the symmetric group are rational integers ([5], [13]), but those of the alternating group are not necessarily rational integers ([5]). The main purpose of this paper is to give a proof of the following theorem ([4]).

Theorem 1. The generalized decomposition numbers of the alternating group for p=2 are rational integers.

Throughout this paper, we consider the representations of groups over the algebraically closed field of characteristic 2. Let x be a 2element of the alternating group A_n , and let $N_A(x)$ be the normalizer of x in A_n . In section 2 we shall prove that every 2-block B_{σ}^* of $N_A(x)$ is characterized by a 2-core $[\alpha_0]$, and then B_{σ}^* with the 2-core $[\alpha_0]$ determines the 2-block B_{σ} of A_n with the same 2-core $[\alpha_0]$.

1. The generalized symmetric group $S(a_i, 2^i)$ is the semi-direct product of the normal subgroup Q_i of order $(2^i)^{a_i}$ and the subgroup $S_{a_i}^*$ which is isomorphic to the symmetric group $S_{a_i}([9])$:

(1.1) $S(a_i, 2^i) = S_{a_i}^*Q_i$, $S_{a_i}^* \cap Q_i = 1$, $S_{a_i}^* \cong S_{a_i}$. Evidently we have $S(a_0, 1) = S_{a_0}$. Since $S(a_i, 2^i)/Q_i \cong S_{a_i}$, we see that every modular irreducible character of $S(a_i, 2^i)$ is given by the modular irreducible character of S_{a_i} .

Let G be a subgroup of the symmetric group S_n and let us denote by G^+ the subgroup $G \cap A_n$ of G. Then we have $G=G^+$ or $(G:G^+)=2$. Since $(Q_i:Q_i^+)=2$ for i>0, we see that

(1.2)
$$S(a_i, 2^i)^+ = S^*_{a_i} Q^+_i.$$

Let y be an arbitrary 2-regular element of $S(a_i, 2^i)$. Then y is the even permutation and hence $y \in S(a_i, 2^i)^+$. It follows from $S(a_i, 2^i)^+/Q_i^+$ $\cong S_{a_i}$ that every representation of $S(a_i, 2^i)^+$ obtained by restricting the modular irreducible representation of $S(a_i, 2^i)$ remains irreducible. If we denote by φ_{ϵ}^i ($\kappa = 1, 2, \dots, m_i$) the modular irreducible characters of S_{a_i} , then the modular irreducible characters of $S(a_i, 2^i)$ and $S(a_i, 2^i)^+$ are also given by $\varphi_{\epsilon}^i(y)$. This implies that the representation \tilde{U}_{ϵ}^j of $S(a_i, 2^i)$ induced from the indecomposable constituent U_{ϵ}^i of the regular representation of $S(a_i, 2^i)^+$ is the indecomposable constituent of the regular representation of $S(a_i, 2^i)$ ([8]) and hence if we denote by \tilde{c}_{ϵ} , and c_i the Cartan invariants of $S(a_i, 2^i)$ and $S(a_i, 2^i)^+$ respectively, then (1.3) $\tilde{c}_{r} = 2c_{r}$

It follows from (1.3) that two characters $\varphi_{\epsilon}^{i}(y)$ and $\varphi_{i}^{i}(y)$ of $S(a_{i}, 2^{i})^{+}$ belong to the same 2-block, if and only if $\varphi_{k}^{i}(y)$ and $\varphi_{k}^{i}(y)$ of $S(a_{i}, 2^{i})$ belong to the same 2-block.

Let $x \neq 1$ be a 2-element of A_n which consists of a_i cycles of length $2^i \ (0 \leq i \leq l, a_i \geq 0)$. Denote by N(x) the normalizer of x in S_n . Then $N_A(x) = N(x) \cap A_n$ is the normalizer of x in A_n . We have ([13]) (1.4) $N(x) = S(a_0, 1) \times S(a_1, 2) \times \cdots \times S(a_l, 2^l)$

and every modular irreducible character φ^x of N(x) is the product of the modular irreducible characters φ^i of S_{a_i} :

(1.5)
$$\varphi^x = \varphi^0 \varphi^1 \cdots \varphi^l.$$

If $a_0 = 0$, then

$$N(x) \supset N_A(x) \supseteq S(a_1, 2)^+ \times S(a_2, 2^2)^+ \times \cdots \times S(a_l, 2^l)^+.$$

Hence we see easily that every modular irreducible character of $N_A(x)$ is given by $\omega^x = \omega^1 \omega^2 \cdots \omega^l$

(1.6)

If
$$a_0 \neq 0$$
, then $N(x) = S_{a_0} \times T$ where
 $T = S(a_1, 2) \times S(a_2, 2^2) \times \cdots \times S(a_l, 2^l)$

and we have

$$N_A(x) = A_{a_0} \times T^+ + (A_{a_0} \times T^+)st$$

where s and t denote the odd permutations of S_{a_0} and T respectively. We see from $st \in N_A(x)$ that two 2-regular elements which are conjugate in S_{a_0} are also conjugate in $N_A(x)$. This implies that every representation of $N_A(x)$ obtained by restricting the modular irreducible representation of S_{a_0} remains irreducible. Hence we see that every modular irreducible character of $N_A(x)$ is given by (1.5). Consequently, for $0 \leq a_0 < n$ every modular irreducible character of $N_A(x)$ is given by (1.5) and the matrix Φ^x of the modular irreducible characters of $N_A(x)$ is the Kronecker product of the matrices Φ_{a_i} of the modular irreducible characters φ^i of S_{a_i} :

(1.7)
$$\Phi^x = \Phi_{a_0} \times \Phi_{a_1} \times \cdots \times \Phi_{a_l}.$$

Let y be a 2-regular element of A_n such that xy = yx. Then we have the following lemma (cf. [13]).

Lemma 1. Let $x \neq 1$ be a 2-element of A_n . Then the modular irreducible characters $\varphi^x(y)$ of $N_A(x)$ are rational integers.

Now we shall give the proof of Theorem 1. Let $y_0 = 1, y_1, \dots, y_{r-1}$ be a complete system of representatives for the 2-regular elements in $N_A(x)$ such that they all lie in different classes of $N_A(x)$ but that every 2-regular element in $N_A(x)$ is conjugate to one of them. Then the xy_A $(j=0,1,\dots,r-1)$ constitute a complete system of representatives for the classes of A_n which contain an element whose 2-factor is conjugate

758

to x in A_n . We denote by $\zeta_0 = 1, \zeta_1, \dots, \zeta_{s-1}$ the irreducible characters of A_n in the field of complex numbers and set

If $x \neq 1$, then the $\zeta_i(xy_j)$ are rational integers. It follows from (1.9) $Z^x = D^x \Phi^x$

where $D^x = (d_{i_s}^x)$ is the matrix of the generalized decomposition numbers $d_{i_s}^x$ of A_n that

(1.10) $D^x = Z^x (\Phi^x)^{-1}.$

This, combined with Lemma 1, yields that the d_{is}^x are rational numbers. Since the d_{is}^x are algebraic integers, we see that the d_{is}^x are rational integers.

As an example we shall calculate the d_{ix}^x of A_7 for p=2 and x=(45) (67) (cf. [5]). Since

 $N_{\scriptscriptstyle A}((45)(67)) = S(3,1)^{\scriptscriptstyle +} \times S(2,2)^{\scriptscriptstyle +} + (S(3,1)^{\scriptscriptstyle +} \times S(2,2)^{\scriptscriptstyle +})(12)(45),$ we have by (1.7)

$$\Phi^x = \Phi_3 \times \Phi_2 = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Since $y_0 = 1, y_1 = (123)$, we obtain

	「 1	1]		1	- 1	07
	2	2			2	0
	-1	-1			-1	0
	-1	-1			-1	0
$Z^x =$	1	1,	and hence	$D^x = $	1	0.
	2	-1			0	1
	2	-1			0	1
	-2	1			0	-1
	$\lfloor -2$	1			0	-1

2. Let U_{ϵ}^{x} be an indecomposable constituent of the regular representation of $N_{A}(x)$ and let \tilde{U}_{ϵ}^{x} be the representation of N(x) induced from U_{ϵ}^{x} . Then we see that \tilde{U}_{ϵ}^{x} is the indecomposable constituent of the regular representation of N(x). Let us denote by $\tilde{c}_{\epsilon\lambda}$ and $c_{\epsilon\lambda}$ the Cartan invariants of N(x) and $N_{A}(x)$ respectively. We then obtain (2.1) $\tilde{c}_{\epsilon\lambda} = 2c_{\epsilon\lambda}$.

We have by (2.1) the following

Lemma 2. Two characters φ_*^x and φ_*^x of $N_A(x)$ belong to the same 2-block, if and only if φ_*^x and φ_*^x of N(x) belong to the same 2-block.

Lemma 3. Let

$$\varphi_{\kappa}^{x} = \varphi_{\kappa_{0}}^{0} \varphi_{\kappa_{1}}^{1} \cdots \varphi_{\kappa_{l}}^{l},$$
$$\varphi_{\lambda}^{x} = \varphi_{\lambda_{0}}^{0} \varphi_{\lambda_{1}}^{1} \cdots \varphi_{\lambda_{l}}^{l}$$

be two modular irreducible characters of $N_A(x)$. Then φ_x^x and φ_λ^x belong to the same 2-block, if and only if $\varphi_{x_0}^0$ and $\varphi_{\lambda_0}^0$ of S_{a_0} belong to the same 2-block.

Proof. For i>0, $S(a_i, 2^i)$ has only one block ([12], Lemma 10). Combining this with Lemma 2, we obtain the proof of Lemma 3.

Let us denote by B^0_{σ} the 2-block of S_{α_0} which contains the character $\varphi^0_{\epsilon_0}$ and by $[\alpha_0]$ the 2-core of B^0_{σ} . By Lemma 3, we may call $[\alpha_0]$ the 2-core of the 2-block B^x_{σ} which contains the character φ^x_{ϵ} .

Lemma 2, combined with [(13), Theorem 2], gives the following

Theorem 2. Let $[\alpha_0]$ be the 2-core of the 2-block B^x_{σ} of $N_A(x)$. Then B^x_{σ} determines the 2-block B_{σ} of A_n with the same 2-core $[\alpha_0]$.

References

- [1] R. Brauer: On the connection between the ordinary and the modular characters of groups of finite order. Ann. of Math., 42, 926-935 (1941).
- [2] —: On blocks of characters of groups of finite order. I. Proc. Nat. Acad. Sci. U. S. A., 32, 182–186 (1946).
- [3] ——: On blocks of characters of groups of finite order. II. Proc. Nat. Acad. Sci. U. S. A., 32, 215–219 (1946).
- [4] —: On a conjecture of Nakayama. Trans. Roy. Soc. Canada, Sec. III, 41, 11–19 (1947).
- [5] A. Kerber: Zur modularen Darstellungstheorie symmetrischer und alterniernder Gruppen. Mitt. Math. Sem. Univ. Giessen, 1-80 (1966).
- [6] T. Nakayama: On some modular properties of irreducible representations of a symmetric group. I. Japan. J. Math., 17, 89-108 (1941).
- [7] T. Nakayama and M. Osima: Note on blocks of symmetric groups. Nagoya Math. J., 6, 111-117 (1954).
- [8] M. Osima: On the representations of groups of finite order. Math. J. Okayama Univ., 1, 33-61 (1952).
- [9] —: On the representations of the generalized symmetric group. Math.
 J. Okayama Univ., 4, 39-56 (1954).
- [10] ——: On blocks of characters of the symmetric group. Proc. Japan Acad., 31, 131-134 (1955).
- [11] —: Notes on blocks of group characters. Math. J. Okayama Univ., 4, 175-188 (1955).
- [12] ——: On the representations of the generalized symmetric group. II. Math.
 J. Okayama Univ., 6, 81–97 (1956).
- [13] ——: On the generalized decomposition numbers of the symmetric group.
 J. Math. Soc. Japan, 20, 289-296 (1968).
- [14] ——: On the generalized decomposition numbers of the alternating group. Symposium on groups, Kyoto Univ. (1968) (in Japanese).