# 167. On the Generalized Decomposition Numbers of the Alternating Group 

By Masaru Osima<br>Institute of Mathematics, College of General Education, Osaka University

(Comm. by Kenjiro Shoda, M. J. A., Dec. 13, 1971)

The generalized decomposition numbers of the symmetric group are rational integers ([5], [13]), but those of the alternating group are not necessarily rational integers ([5]). The main purpose of this paper is to give a proof of the following theorem ([4]).

Theorem 1. The generalized decomposition numbers of the alternating group for $p=2$ are rational integers.

Throughout this paper, we consider the representations of groups over the algebraically closed field of characteristic 2 . Let $x$ be a 2 element of the alternating group $A_{n}$, and let $N_{A}(x)$ be the normalizer of $x$ in $A_{n}$. In section 2 we shall prove that every 2 -block $B_{\sigma}^{*}$ of $N_{A}(x)$ is characterized by a 2 -core $\left[\alpha_{0}\right]$, and then $B_{\sigma}^{*}$ with the 2 -core $\left[\alpha_{0}\right]$ determines the 2 -block $B_{\sigma}$ of $A_{n}$ with the same 2 -core $\left[\alpha_{0}\right]$.

1. The generalized symmetric group $S\left(a_{i}, 2^{i}\right)$ is the semi-direct product of the normal subgroup $Q_{i}$ of order $\left(2^{i}\right)^{a_{i}}$ and the subgroup $S_{a_{i}}^{*}$ which is isomorphic to the symmetric group $S_{a_{i}}$ ([9]):

$$
\begin{equation*}
S\left(a_{i}, 2^{i}\right)=S_{a_{i}}^{*} Q_{i}, \quad S_{a_{i}}^{*} \cap Q_{i}=1, \quad S_{a_{i}}^{*} \cong S_{a_{i}} \tag{1.1}
\end{equation*}
$$

Evidently we have $S\left(a_{0}, 1\right)=S_{a_{0}}$. Since $S\left(a_{i}, 2^{i}\right) / Q_{i} \cong S_{a_{i}}$, we see that every modular irreducible character of $S\left(a_{i}, 2^{i}\right)$ is given by the modular irreducible character of $S_{a_{i}}$.

Let $G$ be a subgroup of the symmetric group $S_{n}$ and let us denote by $G^{+}$the subgroup $G \cap A_{n}$ of $G$. Then we have $G=G^{+}$or $\left(G: G^{+}\right)=2$. Since $\left(Q_{i}: Q_{i}^{+}\right)=2$ for $i>0$, we see that

$$
\begin{equation*}
S\left(a_{i}, 2^{i}\right)^{+}=S_{a_{i}}^{*} Q_{i}^{+} . \tag{1.2}
\end{equation*}
$$

Let $y$ be an arbitrary 2 -regular element of $S\left(a_{i}, 2^{i}\right)$. Then $y$ is the even permutation and hence $y \in S\left(a_{i}, 2^{i}\right)^{+}$. It follows from $S\left(a_{i}, 2^{i}\right)^{+} / Q_{i}^{+}$ $\cong S_{a_{i}}$ that every representation of $S\left(a_{i}, 2^{i}\right)^{+}$obtained by restricting the modular irreducible representation of $S\left(a_{i}, 2^{i}\right)$ remains irreducible. If we denote by $\varphi_{k}^{i}\left(\kappa=1,2, \cdots, m_{i}\right)$ the modular irreducible characters of $S_{a_{i}}$, then the modular irreducible characters of $S\left(a_{i}, 2^{i}\right)$ and $S\left(a_{i}, 2^{i}\right)^{+}$ are also given by $\varphi_{k}^{i}(y)$. This implies that the representation $\tilde{U}_{k}^{j}$ of $S\left(a_{i}, 2^{i}\right)$ induced from the indecomposable constituent $U_{k}^{i}$ of the regular representation of $S\left(\alpha_{i}, 2^{i}\right)^{+}$is the indecomposable constituent of the regular representation of $S\left(a_{i}, 2^{i}\right)([8])$ and hence if we denote by $\tilde{c}_{\kappa \lambda}$ and
$c_{k \lambda}$ the Cartan invariants of $S\left(a_{i}, 2^{i}\right)$ and $S\left(a_{i}, 2^{i}\right)^{+}$respectively, then (1.3) $\tilde{c}_{\kappa \lambda}=2 c_{\kappa \lambda}$.
It follows from (1.3) that two characters $\varphi_{k}^{i}(y)$ and $\varphi_{k}^{i}(y)$ of $S\left(a_{i}, 2^{i}\right)^{+}$ belong to the same 2-block, if and only if $\varphi_{k}^{i}(y)$ and $\varphi_{i}^{i}(y)$ of $S\left(a_{i}, 2^{i}\right)$ belong to the same 2-block.

Let $x \neq 1$ be a 2 -element of $A_{n}$ which consists of $a_{i}$ cycles of length $2^{i}\left(0 \leqq i \leqq l, a_{i} \geqq 0\right)$. Denote by $N(x)$ the normalizer of $x$ in $S_{n}$. Then $N_{A}(x)=N(x) \cap A_{n}$ is the normalizer of $x$ in $A_{n}$. We have ([13])

$$
\begin{equation*}
N(x)=S\left(a_{0}, 1\right) \times S\left(a_{1}, 2\right) \times \cdots \times S\left(a_{l}, 2^{l}\right) \tag{1.4}
\end{equation*}
$$

and every modular irreducible character $\varphi^{x}$ of $N(x)$ is the product of the modular irreducible characters $\varphi^{i}$ of $S_{a_{i}}$ :

$$
\begin{equation*}
\varphi^{x}=\varphi^{0} \varphi^{1} \cdots \varphi^{l} \tag{1.5}
\end{equation*}
$$

If $a_{0}=0$, then

$$
N(x) \supset N_{A}(x) \supseteq S\left(a_{1}, 2\right)^{+} \times S\left(a_{2}, 2^{2}\right)^{+} \times \cdots \times S\left(a_{l}, 2^{l}\right)^{+}
$$

Hence we see easily that every modular irreducible character of $N_{A}(x)$ is given by

$$
\begin{equation*}
\varphi^{x}=\varphi^{1} \varphi^{2} \cdots \varphi^{l} \tag{1.6}
\end{equation*}
$$

If $a_{0} \neq 0$, then $N(x)=S_{a_{0}} \times T$ where

$$
T=S\left(a_{1}, 2\right) \times S\left(a_{2}, 2^{2}\right) \times \cdots \times S\left(a_{l}, 2^{l}\right)
$$

and we have

$$
N_{A}(x)=A_{a_{0}} \times T^{+}+\left(A_{a_{0}} \times T^{+}\right) s t
$$

where $s$ and $t$ denote the odd permutations of $S_{a_{0}}$ and $T$ respectively. We see from $s t \in N_{A}(x)$ that two 2-regular elements which are conjugate in $S_{a_{0}}$ are also conjugate in $N_{A}(x)$. This implies that every representation of $N_{A}(x)$ obtained by restricting the modular irreducible representation of $S_{a_{0}}$ remains irreducible. Hence we see that every modular irreducible character of $N_{A}(x)$ is given by (1.5). Consequently, for $0 \leqq a_{0}<n$ every modular irreducible character of $N_{A}(x)$ is given by (1.5) and the matrix $\Phi^{x}$ of the modular irreducible characters of $N_{A}(x)$ is the Kronecker product of the matrices $\Phi_{a_{i}}$ of the modular irreducible characters $\varphi^{i}$ of $S_{a_{i}}$ :

$$
\begin{equation*}
\Phi^{x}=\Phi_{a_{0}} \times \Phi_{a_{1}} \times \cdots \times \Phi_{a_{l}} \tag{1.7}
\end{equation*}
$$

Let $y$ be a 2-regular element of $A_{n}$ such that $x y=y x$. Then we have the following lemma (cf. [13]).

Lemma 1. Let $x \neq 1$ be a 2-element of $A_{n}$. Then the modular irreducible characters $\varphi^{x}(y)$ of $N_{A}(x)$ are rational integers.

Now we shall give the proof of Theorem 1. Let $y_{0}=1, y_{1}, \cdots, y_{r-1}$ be a complete system of representatives for the 2 -regular elements in $N_{A}(x)$ such that they all lie in different classes of $N_{A}(x)$ but that every 2-regular element in $N_{A}(x)$ is conjugate to one of them. Then the $x y_{j}$ ( $j=0,1, \cdots, r-1$ ) constitute a complete system of representatives for the classes of $A_{n}$ which contain an element whose 2 -factor is conjugate
to $x$ in $A_{n}$. We denote by $\zeta_{0}=1, \zeta_{1}, \cdots, \zeta_{s-1}$ the irreducible characters of $A_{n}$ in the field of complex numbers and set

$$
\begin{equation*}
Z^{x}=\left(\zeta_{i}\left(x y_{j}\right)\right) . \tag{1.8}
\end{equation*}
$$

If $x \neq 1$, then the $\zeta_{i}\left(x y_{j}\right)$ are rational integers. It follows from

$$
\begin{equation*}
Z^{x}=D^{x} \Phi^{x} \tag{1.9}
\end{equation*}
$$

where $D^{x}=\left(d_{i t}^{x}\right)$ is the matrix of the generalized decomposition numbers $d_{i k}^{x}$ of $A_{n}$ that
(1.10) $\quad D^{x}=Z^{x}\left(\Phi^{x}\right)^{-1}$.

This, combined with Lemma 1, yields that the $d_{i k}^{x}$ are rational numbers. Since the $d_{i k}^{x}$ are algebraic integers, we see that the $d_{i k}^{x}$ are rational integers.

As an example we shall calculate the $d_{i v}^{x}$ of $A_{7}$ for $p=2$ and $x=(45)$
(67) (cf. [5]). Since

$$
N_{A}((45)(67))=S(3,1)^{+} \times S(2,2)^{+}+\left(S(3,1)^{+} \times S(2,2)^{+}\right)(12)(45),
$$

we have by (1.7)

$$
\Phi^{x}=\Phi_{3} \times \Phi_{2}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] \times[1]=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] .
$$

Since $y_{0}=1, y_{1}=(123)$, we obtain

$$
Z^{x}=\left[\begin{array}{rr}
1 & 1 \\
2 & 2 \\
-1 & -1 \\
-1 & -1 \\
1 & 1 \\
2 & -1 \\
2 & -1 \\
-2 & 1 \\
-2 & 1
\end{array}\right], \quad \text { and hence } D^{x}=\left[\begin{array}{rr}
1 & 0 \\
2 & 0 \\
-1 & 0 \\
-1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1 \\
0 & -1 \\
0 & -1
\end{array}\right] .
$$

2. Let $U_{\kappa}^{x}$ be an indecomposable constituent of the regular representation of $N_{A}(x)$ and let $\tilde{U}_{k}^{x}$ be the representation of $N(x)$ induced from $U_{k}^{x}$. Then we see that $\tilde{U}_{x}^{x}$ is the indecomposable constituent of the regular representation of $N(x)$. Let us denote by $\tilde{c}_{\kappa \lambda}$ and $c_{k \lambda}$ the Cartan invariants of $N(x)$ and $N_{A}(x)$ respectively. We then obtain

$$
\begin{equation*}
\tilde{c}_{k \lambda}=2 c_{k \lambda} . \tag{2.1}
\end{equation*}
$$

We have by (2.1) the following
Lemma 2. Two characters $\varphi_{x}^{x}$ and $\varphi_{\lambda}^{x}$ of $N_{A}(x)$ belong to the same 2-block, if and only if $\varphi_{k}^{x}$ and $\varphi_{\lambda}^{x}$ of $N(x)$ belong to the same 2-block.

Lemma 3. Let

$$
\begin{aligned}
\varphi_{k}^{x} & =\varphi_{k_{0}^{0}}^{0} \varphi_{k_{1}}^{1} \cdots \varphi_{k l}^{l}, \\
\varphi_{\lambda}^{x} & =\varphi_{\lambda_{0}}^{0} \varphi_{\lambda_{1}}^{1} \cdots \varphi_{\lambda_{l}}^{l}
\end{aligned}
$$

be two modular irreducible characters of $N_{A}(x)$. Then $\varphi_{x}^{x}$ and $\varphi_{\lambda}^{x}$ belong to the same 2-block, if and only if $\varphi_{k_{0}}^{0}$ and $\varphi_{\lambda_{0}}^{0}$ of $S_{a_{0}}$ belong to the same 2-block.

Proof. For $i>0, S\left(a_{i}, 2^{i}\right)$ has only one block ([12], Lemma 10). Combining this with Lemma 2, we obtain the proof of Lemma 3.

Let us denote by $B_{o}^{0}$ the 2 -block of $S_{a_{0}}$ which contains the character $\varphi_{x_{0}}^{0}$ and by $\left[\alpha_{0}\right]$ the 2 -core of $B_{o}^{0}$. By Lemma 3, we may call [ $\alpha_{0}$ ] the 2core of the 2-block $B_{\sigma}^{x}$ which contains the character $\varphi_{k}^{x}$.

Lemma 2, combined with [(13), Theorem 2], gives the following
Theorem 2. Let $\left[\alpha_{0}\right]$ be the 2-core of the 2-block $B_{\sigma}^{x}$ of $N_{A}(x)$. Then $B_{\sigma}^{x}$ determines the 2 -block $B_{\sigma}$ of $A_{n}$ with the same 2-core $\left[\alpha_{0}\right]$.

## References

[1] R. Brauer: On the connection between the ordinary and the modular characters of groups of finite order. Ann. of Math., 42, 926-935 (1941).
[2] -: On blocks of characters of groups of finite order. I. Proc. Nat. Acad. Sci. U. S. A., 32, 182-186 (1946).
[3] --: On blocks of characters of groups of finite order. II. Proc. Nat. Acad. Sci. U. S. A., 32, 215-219 (1946).
[4] -: On a conjecture of Nakayama. Trans. Roy. Soc. Canada, Sec. III, 41, 11-19 (1947).
[5] A. Kerber: Zur modularen Darstellungstheorie symmetrischer und alterniernder Gruppen. Mitt. Math. Sem. Univ. Giessen, 1-80 (1966).
[6] T. Nakayama: On some modular properties of irreducible representations of a symmetric group. I. Japan. J. Math., 17, 89-108 (1941).
[7] T. Nakayama and M. Osima: Note on blocks of symmetric groups. Nagoya Math. J., 6, 111-117 (1954).
[8] M. Osima: On the representations of groups of finite order. Math. J. Okayama Univ., 1, 33-61 (1952).
[9] -: On the representations of the generalized symmetric group. Math. J. Okayama Univ., 4, 39-56 (1954).
[10] -: On blocks of characters of the symmetric group. Proc. Japan Acad., 31, 131-134 (1955).
[11] -: Notes on blocks of group characters. Math. J. Okayama Univ., 4, 175-188 (1955).
[12] -: On the representations of the generalized symmetric group. II. Math. J. Okayama Univ., 6, 81-97 (1956).
[13] --: On the generalized decomposition numbers of the symmetric group. J. Math. Soc. Japan, 20, 289-296 (1968).
[14] --: On the generalized decomposition numbers of the alternating group. Symposium on groups, Kyoto Univ. (1968) (in Japanese).

