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1. Introduction. Let 2 be a bounded domain in R? with smooth
boundary 02 and let C,(2) be the Banach space of all continuous func-
tions f on £ satisfying f(#)=0 for xe 02, with the norm | f]||
=maX,c,|f(®)]. We set a e Cy(2). Inthe present paper, we consider
the differential equation

(1.1) ©(0u/ot)—du+yw)=0 in 2% (0, o)
with the boundary condition

1.2) w(x, t)=0 on 02 % (0, o)

and the initial condition

(1.3) w(zx, 0)=a(x) in 2,

where (and throughout the present paper unless otherwise stated) ¢
=¢@(r) is a strictly monotone increasing continuous function defined on
R! satisfying lim,,. ¢(r)=o0,lim,, ., ¢(r)=—oo and ¢(0)=0, 4 is the
Laplace operator in the space variable x and y=y(r) is a monotone
non-decreasing continuous function defined on R' satisfying y(0)=0.

Let h and k be positive numbers and define the following implicit
finite difference scheme (1.4) which is an analogue of the problem (1.1)-
1.2)-(1.3):

SD((MZ‘I,,-Z,‘..,M—u?,jil,,...,id)/k)——A(n)uﬁ,iz,...,id—l— T(uﬁ,iz,.--,id)=0’

1.4) Ty, by + - -, 1g integers, (4,0, LA, - - -, 1.0 e Q,n=1,2, - ..,

ugl,iz,"',’ldza(ilh’ Bh, -y igh), (Gh, Gh, - - -, i0h) € 2,
where
d
(1.5) A(h)“{:ix,iz,--',m:;l A<h>,15n,i2,-~-,m

and each term 4,,, ;&,, ;, .
is defined as follows.

Case 1. If Gih, - - -, %, shy Gy = Dhy 3y, - - -, igh) € 9, then

A(h),jéil,igpn,id:(Ei1,-~~,ij—1,'ij+1,ij+1,-~-,id—'25i1,iz,~-,id
+Ei;l,~'-,ij_1,ij—-1,ij+1,"',id)/hz’

Case 2. If (yh, -+ -, iy 1k, (i34 Dhy iy, - - -, igh) € Q and (i, - - -,

Tk, Gy—Dh, 3,00, - -, 1.0) € 2, then
A(h),jéh,h,---,id:2{(0i1,i2,---,id;j+1)_1&151,--~,ij_1,z‘j—1,ij+1,~--,id
— 03 g 1€ iy it | 1

...iz in the right-hand side of the above formula

where
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Oria,enyigrs=1nf {0 € (0, 115 (@R, - - -, 35,h, @+ Oh, iy b, - - -, 150) & 21>0.

Case 3. If (4hy -« -,%; 1k, G+ DR, 30, -+, ih) € 2 and (b, - - -,
Tyl (G —1h, i,k - - -, 50) € 2, then

A(n),jéi,,i,,...,id:‘2{(§¢1,i,,...,id;j+1)_151:1,-~-,ij_1,ij+1,ij+1,-u,id
— 0@':31;2,..-,id;jSil,iz,--—,id}/h’zy
where
gil,ia,---,id;j:inf {0 € (0’ 1] > (7:1h’ ] ”:j-lh’ (11—0)}1/, 'ij+1h, trty ’&dh) 2 Q}>0
Case 4. If (4,h, ---,%; 1k, Gy Dh, 05,0, -+, i0) ¢ 2, then
Ay, i€ iryiawrsia= — 2& sy, 100 tvin, o iais” Otia,ooesiaia | W5
where 0, ,, ....i5;; and 0, 4, ... .,.; are as defined above.

Our purpose is to prove the following theorem by the recent theory
of nonlinear semi-groups.

Theorem 1. (i) There exists a unique solution {uy. , ... ..} of (1.4).

(i) Fiz an arbitrary positive number T. Under the additional
assumption that ¢ and y are continuously differentiable, we have
(1.6) h}%’rﬁo ‘ nssli’l/)lc |uﬁ,¢2’_,,,id—u((1:1h, izh’ Tty idh)» nk)|=0

(t1hyigh,+++,igh) €2
for some u=u(x, t) ¢ C([0, T1; C\(£2)).

Remark 1. u in Theorem 1 will be given by a (nonlinear) con-
traction semi-group {S;};s, in Cy(£2):

.7 u(-, H)=S8,a, 0<t<T.
Such a semi-group will be constructed in § 2.

Remark 2. In the case y(r)=0, (1.1) is formally equivalent to the
nonlinear heat equation: cp(0v/dt)=div (x grad v), where specific heat
¢, density p and heat conductivity # depend on the temperature v
=v(x,t); K'=k,¢0'c-K=cp/k,0u/0t=Kov. Concerning this, see [10],
p. 49 (cf. [9D).

2. Preliminaries.” By definition a (possibly) nonlinear operator
A in real Banach space X is dissipative if ||(f —AAf) — (9 —2A9)|
>||f—g| whenever f,ge D(A) for each A>0. The dissipativity of A
is equivalent to the condition: z(f—g, —Af+Ag)>0 whenever f,
g € D(A), where 7(f, 9)=lim, , 7" (| f+eg[—[fID, f,9e X. A dissipa-
tive operator A in X is said to be m-dissipative if R(I—2A)=X for
every, or equivalently, for some 4>0.

Let A be the infinitesimal generator of a “compact”® contraction
semi-group {exp (t4); t>0} of class (Cy) in Cy(2). For ¢ introduced in
§ 1, we set ¢~'= {8 and define the operator 8 in Cy(%2) by
2.1 D(B)=CyQ), (BN)(@)=B(f (@), x e 2, for fe D).

Similarly one defines the operator 7 in Cy(92).

1) In this section we discuss in the abstract setting.
2) A semi-group {exp (tQ); t=0} of class (Co) in Banach space is said to be
compact if exp (tQ) is compact for every t>0 (see [T]).



64 Y. KoNisHI [Vol. 48,

Proposition 2. The product B(A—7) of B and A—7 is an m-dis-
sipative operator with domain dense in Cy(2).
In the case X=Cy(Q),

2.2) 7(f,9)= max (sgn f(@)g@), f,g€eCy),f+0
selalf@I=11711)

([8],86). Consequently we have

Lemma 3. The product EA of B and o dissipative operator A in
Cy(Q) is dissipative. ‘

Proof of Proposition 2. Since 4—7 is dissipative, f(4—7) is dis-
gipative by Lemma 3. We shall prove the relation R(I— B(A—;"))
=Cy(2). We introduce the Yosida approximation A,(e>0) of 4, as
usual, by A, =& {(I—ed)'—1I} (=AI—eA)™"), which is a continuous
dissipative operator defined on Cy(2). Since E(A,—;‘f) (¢>0) is a con-
tinuous dissipative operator defined on C (), it is m-dissipative (see
[5]). Accordingly, for an arbitrarily fixed w e Cy(£2), there exists

1. € Cy(2) satisfying

2.3) fo—BU—Pf=w
for each ¢>0. By the dissipativity of 3(4,—7) we have
2.4 17 l<lwl]

for each ¢>>0. Noticing that

2.5) | —=DT—eD || T—eD) N+ B o=+ 7S
<|wl+max (p@|w]), —(—2|wD)+max (lwl), —y(—lw])
and that (I —4)! is compact (see Theorem 3.3 in [7]), we can conclude
that the set {{ —eA)~'f,; ¢ >0} is relatively compact in Cy(2). Conse-
quently there exists a sequence ¢, | 0 (¢,>0) such that

(2.6) s-lim I —e, D7'f,,=1

n—+0

exists in C(2). From this, (2.6) and (2.3) one (ikz’gains
li_.m ”fsn “f“glim ”fcn_(I_EnA)_lfzn“:lifn &n ”Aanfsn”

2.7 <{max (¢ [w]), —p(=2[w[))
+max ((|wl), —y(~l|w|))}-lme,=o0.
Accordingly

@9 s-lim A —e, DS,
' =s-lim (B-U(f,, —w) + 7. )=B(f —w)+Tf.

n—rc0

In view of (2.6) and (2.8) and by the closedness of 4, fe D(4) and Af
=B (f—w)+Tf. ~ Q.E.D.
Applying Theorem I in [2] to the operator 3(4—7), we obtain

Corollary 4. E(A—T) “generates” a (nonlinear) contraction semi-
group on Cy(2):
(2.9) exp (t(A—7))-a= s-lim {I—2 B(A—7)} g

exists for a e Cy(2),t>0 and {exp (tﬁ(/l—?)); t>0} belongs to Qy(Cy(£2))
in the sense of [2].
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Remark 3. Under the additional assumption that {exp (t4); ¢>0}
is “non-negative” (see [8]), {exp (tE(A—?)); t>0} belongs to Q7 (Cy(2))
in the sense of [3].

3. Proof of Theorem 1. Let [, be the finite dimensional Banach
space of all real vectors {&,, ;, ... .. cun, ian, o 1anr e 00 ROTMEA BY [{E, 44 on s |y
=MAX (4,5 100, ignye @ | Sinyia,onyige  SiNCE, in the case X =17, the functional
T=7Tu, is of the form: 7,,({§,, 4. mials {Migyia e ia) =MAX (SN & 4, .. i)
Dig g, iqp Where the maximum is taken for all (¢, 4,, - - -,4,) satisfying
[€insia,eenria) =IH{E a0t |y ([81, §6, cf. (2.2)), 4, defined in §1 is dis-
sipative in Ij;,. On the other hand, for 8 and y we can define as in
(2.1) the corresponding operators in [,, which we denote also by 3 and
7 respectively. Since B(d4,,—7) is a continuous dissipative operator
defined on [j;,, it is m-dissipative ([5]), which proves Theorem 1, (i).
We set

exp (tB(U iy — 7)) A uineria} = S-ljgl (I — 2By = TN E iy iy 0}
for {&,, s it € Gy

Now define the linear contraction operator P, (2>0) of Cy(2) into
I BY Py Ninyiaonia= S @RI, - - - 4igh), (R 0sh, - - - ,i5h) € 2, for fe Cy(Q).
We define the operator 4, in C(2) by D(4p)={f € Cy(2); f € W>4(£2) and
Af € C(D}, (d<g<o0), o fNx)=4f (), f € D(4,), which is independent
of the choice of q. Thus 4, is the infinitesimal generator of a compact
contraction semi-group of class (C,) in Cy(2) (see [6]).

Lemma 5. Assume that ¢ and 7y are continuously differentiadle
and fix an arbitrary positive number T. Then
(3.1) lim sup || Py, exp (tB(4y—7))-a—exp (tB(dy—7)) - Pny|in,=0

h10 0St<T

for each a e C\(£2).

Sketch of the proof of Lemma 5. Set g e C,(2)NCY(2). Noticing
that ¢=p""! and 7 are continuously differentiable, we have
=T —2PBU,—7))'g € C(2) N CHRQ)
whenever 4>0. Consequently we have, remembering the definition of
Ay, that B B
l,irfol | Py = 2By =79 =T = AP 3y = TN Py 9 lliny

gl—hif—{.l I — 2By — PP 3y G — Piay I — 2By — 1) il vy

=21 B(dn Py 52— TP 1,59 — BP oy 4, = FP 8 oy =0-
Hence we have B _

lim || Py — 2By 7)) S — U= 2By =)o o =0
for each f e Cy(2) and 2>0, by means of which we can prove (3.1)
(cf. Theorem 3.1 in [1]).

Proof of Theorem 1, (ii). First we assume that a ¢ Cy(2) N C*(2).
We have
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”(I—‘k@(dm—7))—nP(h)“"P(h)ieXp;_(nkﬂ(AO“7))‘““(h)
._<_”(I-k18(4(h>__ 7)7"P 1,0 —€xp (nk.B(Amf—)_:_)) Pyl ny

+[lexp (nkB(dpy—7)) - Py —P gy exp (nkB(dy—7)) - ||y

and, by the estimate (1.10) in [2], B
(I — kB, — 7)™ "Pnya—exp (nkf(d i, — 7)) - Pyllcny
<2ky n| B )P 1,0 —TFP 3,0) || 1y
Accordingly by Lemma 5 we obtain
Jim | sup ||k, — )Py~ P, exp (nkB(dy—7)- 0wy =0,
It is easy to prove the above equality for a ¢ C,(2), which is nothing but
(1.6) with
.7y u(-, t)=exp (tB(4y—7))-a;
this is the explicit form of (1.7). Q.E.D.
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