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1. Introduction. In the recent decade, the so-called harmonic
analysis of operators grew rapidly by the works mainly due to Sz.
Nagy’s school, cf. [5]. The main tool in their investigations is the
following strong dilation theorem due to Sz. Nagy:

Theorem A. If T is a contraction acting on a Hilbert space ,
then there is a unitary U acting on a Hilbert space including as
a subspace such that
(1) T=PUI (n-0, 1,2,...),
where P is the projection of onto .

By the importance of the theorem, several proofs are given, cf.
[5; Chapter I]. Some of them are based on the following general dila-
tion theorems due to Naimark, cf. [3], [5].

Theorem B. If F(A) is a positive operator-valued measure de-
fined on a a-field of sets and F(A) acts on , then there is a spectral
measure E(A) of 3 acting on including such that
( 2 ) F(A)=PE(A)I (A e ).

Theorem C. If V(g) is an operator-valued positive definite func-
tion defined on a group G and V(g) acts on , then there is a unitary
representation U(g) of G on including such that
( 3 ) V(g)-PU(g)I (g G).

However, there is an another general dilation theorem due to
Stinespring [4] and Umegaki [6] which receives less attentions:

Theorem D. If V(a) is a completely positive (or positive definite
in the sense of [6]) linear mapping of a .-algebra into (), the
algebra of all (bounded linear) operators acting on , then there is a
-homomorphism #(a) of into .() where includes and

satisfies
( 4 ) V(a) Pq(a) (a e ).

It seems to the authors that there is no literature which gives a
proof that Theorem D implies Theorem A. In 2, we shall give some
theorems proofs.

Umegaki [6] pointed out that Theorem C implies Theorem D if
is the group algebra of a locally compact group G. The converse of
this implication obviously follows from
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( 5 ) V(a)--| a(g)V(g)dg (a e LI(G)).
G

Hence, Theorems C and D are equivalent if G is locally compact.
In 3, we shall show that Theorems B and D are equivalent if

is abelian by the help o the ollowing theorem due to Stinespring [4]"

Theorem E. If is abelian, then the complete positivity of V
coincides with the usual positivity.

2. Implication. Here we shall show
Theorem 1o Theorem D implies Theorem A.
Let be the algebra ot all (complex valued) unctions on [0, 2]

with absolutely summable Fourier coefficients; the multiplication of
is the convolution, .-operation is given by

f*(o)- _n*e

and the norm is given by

f(o)- F, e.
Obviously is isometrically isomorphie to the group algebra /I(Z) of
the group Z of all integers.

Let T be a contraction on
of into () by

( 6 ) V(f)--

where

(7)

Then we can define a linear map V

(n>0)
T(n) (n--O)

T*’l(n<0).
For any positive element f e A and x e , we have

(Y(f)xlx)-- an(T(n)xlx)-aollXll2+2Re an(Tnxlx).
#=i

By the theorem of Herglotz-Bochner, we have-- ed(O) (n l),

so that we have

( 8 ) (V(f)xlx)--I x + 2 Re (Tnxlx) edz(O).
Now, we shall employ at technique due to Foias [2]" For every

complex number z with 0Nlz< 1, we have

Re [I + 2 (zT)] Re (I + zT)(I-- zT)- O,
=1

so that we have



218 H. TAKAI and H. YAMADA [Vol. 48,

x + 2 Re (Txlx)rne >= O,
or 0 <__ r 1 and 0_<_ t_<_ 2. Hence, integrating, we have

x ] + 2 Re (Tnx]x)r edp(O) O,

or every 0r1. Tending r to 1, we have V(f)0 by (8).
We shall now utilize Theorem E. Although Theorem E is proved

for C*-algebras, we can modify the proof o Stinespring in our present
setting. Hence we can conclude that V is positive definite.

Applying Theorem D, we have a .-homomorphism of into
() such that V(f)-P(f) for any f e . Let us put

U-(e).
U is clearly a unitary operator acting on , and we have (1).

Our second proo is similar to that of Sz. Nagy-Foia [5; p. 27f].
Let and V be as in the above. Let 0 be the set of all unctions in

whose coefficients vanish up to finite numbers. 0 is a .-subalgebra
o . We shall try to prove directly the complete positiveness o V.
For x, ., x and f, ., f, where

f(o) E a?)e e

we have

where

(Replacing Yt by Yt+c i necessary, we may assume that Yt--O for t 0).
If we put

Zt-" TS-tys,
t<s

then we have

where

Therefore we have

D= (T(t-)(zt Tzt/)l(z- Tz/))
S,t_O

(D(t, s)zt
s,t_O

(t--s>__l)
(t-s-O)
(otherwise).

D --II Zo + ((I-- T* T)zt zt) >= O,
t_l
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which proves that V is positive definite. The remainder o the proo
as same as that o the first proof.

Our third proo is a variant o the second and essentially due to
Foia [2]. In the second proof, we can change into the ollowing"

D-- , (V(f*.f)x
k,m=l

(T(t-8>Yt Ys)
St=O

=lim rt-(T<t->ytly)
0r?l s,t=O

lim 1 p(r O)dO>= O,
O<rl

where

:. tquivalence. In this section, we shall show

Theorem 2. Theorems B and D are equivalent for abelian C*-
algebras.

Let us assume Theorem B. I is an abelian C*-algebra and V
is a positive definite mapping of into _(). Then, by the Gelfand
representation theorem, is .-isomorphic to the algebra C(X) o all
continuous unctions on a compact Hausdorff space X. Let be the
a-field o Borel subsets o X. Then i we put F,--(V(f)]) we obtain
a semi-spectral measure F(A) of on such that

F,(f)--xf(x)d(F(x) )

or f e and , e . Therefore by the hypothesis there exists a
spectral measure E(A) o on such that they satisfy (2).

Let us now define a linear map o into _() by

( 9 q(f)--xf(x)dE(x) (f e ),

then is a .-homomorphism of on $ since E(A) is a spectral
measure, and we have (3) as desired.

Conversely, let be a a-field o sets and F(A) be a semi-spectral
measure o on . Let be an abelian C*-algebra generated by the
characteristic unctions o sets o with the sup-norm. If we define
a linear map V of into _() by

(10) Y(f)--xf(x)dF(x) (f e ),

then V is positive definite since F(A) is a semi-spectral measure.
Therefore, by Theorem D, there is a .-homomorphism of into
_() where 2 such that they satisfy (4).

By the spectral theorem, there is a spectral measure E(A) which
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satisfies (9). Putting f=z., (4) implies (2), where Z is the character-
istic function of A e .

4. Remark. In the final stage of the preparation of the present
note, the authors are awared by Prof. H. Choda that a similar task
for 2 is announced in a paper of Arveson [1]. We suppose that our
proof is somewhat different by the use of l(Z) which is a ,-algebra but
not a C*-algebra.
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