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3. Fundamental Lemma 2. In Fundamental Lemma 1, we have
assumed that there exist one-sided derivatives: F'.(s,). If we assume
that L has a finite curvature at «,, then without the existence of F",.(s,)
we can prove

Fundamental Lemma 2. Suppose that x(s) is twice continuously
differentiable in the neighbourhood of s,. For a fixed o, put

2=, +ee. e (0 <a<m), ¥ =, +e*et. e (0 <ot <m),
where

D) wy=2w(sy), S00=S0(30), »

Q) &e*—0, a*—a as e—+0 in such o manner that e =ee e
(1+40().

Then, putting ee**=1x + 1y, following propositions hold ;
* —

Q) llm {f(z) —f@)=A2 }112)? j_thF(so+a) =A,
where A : a finite complex number, h: any fixed positive constant.

(2) If F(s) is continuous at s=s,, then

lim { f@+ f(z*)__l__ e*dF(s) } —0>
o= +0 wi Jze 2(8) — @,

lim AF(s,+0)— j _d(F(so+a)+F(so—o)}

oS Uhnm

where h: any fixed positive constant.
® If a:%, i.e. =0, y=c¢, then next estimation holds:

e*dF(s)
x(s) —x,

F@+fen—L. |
A Ls

=0([} 514 6o+ + Fa—p)) +0([" 18P0} 40D

as e—+0, where h: any fixed positive constant.

From this lemma, we can derive some important boundary behav-
iours of the integral of Cauchy-Stieltjes type. We begin with

Corollary 2. Assume that the conditions in Fundamental Lemma
2 are satisfied. Then following propositions hold ;

(1) If there exists the finite symmetric derivative at s,:
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lim ———{1’7'(30 +H)—F(s,—)}=A4,

t—+0
then the radial limit exists:
lim (f(2)— f(z*)=A4,
e—+0
where 2=, 1ce*°, 2* =x,—1ic*e'.
) If F(s)is continuous and “smooth” at s,:

lim {F(so+t)+F(so—t) 2F (s)}=0,

t—=+0

then the radial limit emsts.
f@+sen—L[ LI
mtdi. r—x,

as e— +0 where z=ux,+ice™°, 2*¥ =1x,—1ic* e,
Corollary 3. The necessary and sufficitent condition for the ex-
istence of next finite chordal limit :
lim 1 (" 1=l2f
0 21 |e” 2f
where z=e* }i¢- e¥. ei“(0<oz<7r) 18 that we have

dF (s, +0)=A4,

dF(s)=A,

llm—J . —
=0 T J-2(g— x)z-{- 2

where se*=x+1y, and h: any positive fixed constant.

Now we introduce

Definition 1. F(s) is said to belong to I, , at s, (for brevity F(s)
el,,), if, putting F(s)—(a+1ib)(s—s)=U(s)+1V(s), U(s) and V(s) are
increasing functions of s in the neighbourhood of s,, where a and b are
fized finite real constants dependent upon s,.

Then we can prove the converse of Fatou-type theorem;

Theorem 2. Under the same conditions as in Fundamental Lemma
2, assume further that F(s)el,, at s,. Then the converse of Fatou-
type theorem holds, where A is a finite complex constant;

(1) If the radial limit exists:

h}g {f(&—f@z")}=A4,
where z=1x,+ e, z*=x,—ic*e", then F(s) has the symmetric deriva-
tive at s,
}m}) ——{F(so-l-t) —F(s,—b}=A.
-+
(2) 1If the angular limit exists:
lim {7(z)— f (")} =A4,

where z=1x,+ ce'°. ¢, 2* =g, +e*e. e7i" (0<a<r, 0<a*<7) and |cos af
<q<1(q: a fixed positive constant), then F(s) has the derivative at s,:
Fi(sp)=A.
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Next theorem concerns with interesting boundary behaviour of
Cauchy-Stieltjes integral.

Theorem 3. Let f(2) be the regular function defined by Cauchy-
Stieltjes integral :

fy=_L_[ €9FS) ¢, inside L, f(2)=0 for z outside L. If

2m L x—2

x(8) is twice continuously differentiable in the neighbourhood of s,, and
F(s)el,; at s, then following three propositions are equivalent, where
A s u finite complex number ;

(1) f(2) has the angular limit A at x,.

(2) F(s) has the derivative at s,: F'(s)=A.

®) The limit: lim [ Ld(F (s, +0)+ F(s,—0)) exists, and we have

g

e—+0J s

_1_‘ e¥dF(s) _ A.
mJL rx—2x,
By virtue of Theorem 3, we can prove very remarkable results on
H, class. We first introduce
Definition 2. The complex-valued function f(z)=u(z)+iv(z) is
said to belong to B, , at z, (for brevity f(z) e B,,,), if w(z)>a, v(2)>b
in the neighbourhood of z, contained in its definition-domain, where a
and b are fixed finite real constants dependent upon z,.
Then next theorem holds ;
Theorem 4. Suppose that f(z) e H, for |2|<1, and f(z) € B, at
e, Then following three propositions are equivalent, where A is a
finite complex number;
(1) f(2) has the angular limit A at e,
(@) Newt limit exists: lim L L Flesor)dr=A.

t-0 ¢

3) The limit: lim ﬂl{ f(et®+?) — f(et*=7)}dr exists, and we have
T

e=+0Je
1§ I@ gy
at Jizi=1 x—et
As an immediate consequence of Theorem 4, we have
Corollary 4. Let f(2) be regular and bounded for |z|<1. Then
three conditions in Theorem 4 are equivalent.
The equivalence of (1) and (2) in Corollary 4 is already known ([4]
p. 119, [1] p. 612).
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