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1. Introduction. The object of this note is to sketch some results
on the boundary behaviour oi the integral of Cauchy-Stieltjes type,
obtained by the systematic use of generalized I. I. Privalov’s funda-
mental lemmas. The details of proofs will be published in another
journal in near future.

We call next integral as the integral of Cauchy-Stieltjes type

(1.1) f(z)-- 1. edF(s)_ 1 : e(8)dF(s)
2i r x--z 2i x(s)-z

where L is a closed rectifiable Jordan curve of length l, s the arc length,

(s) the angle between the positive real axis and the tangent at the point

x(s) on L, and F(s) the complex-valued function o s of bounded varia-

tion on the segment [0, 1]. If f(z)=_O for z outside L, (1.1) is called
Cauchy-Stieltjes integral ([3] p. 154).

Let x0 be the point X(So), L the part of L which is left after cutting

off the small arc with end points X(So-D and X(So / D. If the next limit
exists"

lim I ; edF(s),
+o 2i L, x-x0

then we call it the singular integral at x0, and we denote it by
1 edF(s)(1.2)
2i L x--x0

In the distance e from the point x0, we choose a point z on the straight

line ZXo inclined by angle 0 to the normal, i.e. Z-Xo+_ ie(+*), and we
consider the difference"

F(,x0,0)-1 [ edF(s)- edF(s) l,2i L x-- z X-- Xo
which is well defined at the point x0 on L where a definite tangent exists.
Then I. I. Privalov’s fundamental lemma ([3] p. 131) is as follows; If
F’(so) exists, then the difference F(,Xo,o) tends to + F’(so) (--F’(so))
uniformly with respect to o, Io1<=- "0 (001), when z tends to Xo

inside (outside) L respectively.
2. Fundamental Lemma 1. We extend I. I. Privalov’s lemma to
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the case where L hs a corner at Xo nd both of F’(So) exist.
Fundamental Lemma 1o Suppose that there exists a corner at Xo"

lim (So-- h), lim (So + h), - (I]),
h+0 +0

and further that F(s) is continuous at S=So and has one-sided deriva-
tives" a F(so), b F_(so). Put

Z=Xo+e.e"=Xo+e.e("-) for >0,
where
(2.1) ]cos a]q, ]cos (a-O)]q for a fixed q (0ql).
Then we have

(2.2) f(z)-- 1 e*dF(s) a (O_a) + a---.sign (0-a)+ o(1)
2i J, x-- x0 2 2 2

as e+ 0 uniformly with respect to satisfying (2.1). Moreover, (2.2)
still holds in the case that Z-Xo+e. e"() and () as + O.

By this lemma, we can extend considerably Z. Ditzian’s theorems
([2]). As its second application, we can generalize to the Jordan domain
classical theorems due to P. Fatou and A. Plessner.

Theorem 1, Suppose that there exists a definite tangent at Xo
=x(s0) and further that F(s) is continuous at S=So, and has one-sided

b=F_(So) Putderivatives a F+(so),
Z X eeiv. ei z X eSeieo -*

(o- (So), 0 , 0 * ),
where

(1)
(2)

=e-"(l+ 0(D).

Icos algq for a fixed q (0ql),

* 0, * as - + 0 in such a manner that *e-"*
Under these conditions,

f(z)--f(z*) (1--)a+ b,
I .[ e*dF(s) 0f(z) + f(z*)--_, x-- Xo

as + 0 uniformly with respect to satisfying (1).
Applying Theorem 1 to the unit disk, we can prove
Corollary 1. Suppose that F(s) is continuous at S=So, and has

one-sided derivatives" a-F(so), b F_(so). Put
Z ri eis ei ei

where 0<r<l, 9o=So+ /2, 0<a<. Then following propositions hold;

’1I: el-[z[z[ (a) a(1) dF(s) 1- a+b as +0 uniformly

with respect to with [cos al q < 1.

(2) _.: r sin (s--O) dF(s)
e-zl
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as -+ 0 uniformly with respect to satisfying cos al--< q 1.
(3) If a:/: b, then

"oo e zl
dF(s)log

as +0 uniformly with respect to such that Icos a[ql.


