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3. A Proof of Negative Answer to Hilbert’s lOth Problem

By Ken HIR0SE and Shigeaki IIDA
Department of Mathematics, Waseda University

(Comm. by Kunihiko KODAIRA, M.J.A., Jan. 12, 1973)

O Recently, the effective methods for Diophantine equations
make a rapid progress.

A. Baker gave an effective procedure for the existence of integer
solutions of some kinds of Diophantine equations in [1].

In his paper [2], Ju. B. Matijasevi5 proved the unsolvability of
Hilbert’s 10th problem by using the results of Julia Robinson, M. Davis
and H. Putnum in [3], [4] and [5].

In the present note, we shall give a short proof of the negative
solution of Hilbert’s 10th problem. That is, we lead to the unsolvabi-
lity of the problem directly from the following result of Davis [3]:

Every recursively enumerable set S can be expressed in the form,
( ) x e S=_(3y)(k)<(3zl)...(3z)[P(x, y, k, zl, ..., z)-0],
where P is a polynomial with integer coecients.

We shall give a 2ull detail in [6].
1. First, we define certain sequences and state some lemmata.
Definition 1o Let u, Vn, (a)n be sequences o numbers defined by

Ul--U2-"1 Un+2:Un+121--Un,
vl 1, v2=3, Vn+2---Vn+ -Vn(a)0=0, (a)=l, (a)n+2=a.(a)n+--(a)n,

where a is a constant.
Lemma 1. (1) If m ln then u Un.
(2) 2U+n "-’UmVn +UnVm.
(3) 2v+=huu+vvn.
(4) u++=u+u++uu.
(5) uv ----u..
(6) (u, v)= 1, i 3Xn.
(7) [(2x(2x)) /(2(2x))] xn.
Proof, For (1)(6), let a=(1+/5)/2, =(1-/-)/2 and then

we obtain u=(a--fl)//5 and Vn=O+, rom which the above
ormulae may be derived.

For (7), we put p-(2X)n. By (2X)nX we have xn(2p)__(2XP)n
< (x+ 1)(2p).

Definition 2. We define sequences o numbers lain, {a}n such that:

{a}0=l, {a}=a--1, {a}n+=a.{a}+--(a}.
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(4)
(5)
(6)

$ine.

(7)

Lemma2. (1) (a)(2+)+=_(a)(modlal+)
(2) (x2--axy+y2--1)--(]m)[((a)+x--x) and ((a)--y)]
(3) (2i, x)[x--(a)] is diophantine, if] (2i, x)[x--lal] is diophantine.

(Similarly (2i, x)[x-(a)] is diophantine, iff (2i, x)[x--{a}] is diophan-
tine.)

If (a) (a), then (a) P.

(2i, y)[y-{x}] is diophantine, iff (2, y, i)[y-(x)2+l] is diophan-

(b),=_ (a) (mod b--a).
Lemma 2 is proved by using induction and Lemma 1.
Lemma 3. (1) (2y, n)[y--(a)n] is diophantine, iff (]y, z, i, /)[(y

=(a)) and (i-la+n) and (z-(a)2)] are diophantine.
(2) (]y,z, i, 1)[(i-la2/n) and (y-(a),) and (z-(a)2)] is diophan-

tine.
By Lemma 2, Lemma 3-(2) is proved by similar method to

Matijasevi6’s one in [2].
Lemma 4. (2y, n)[y--(a)n], (2x, n)[x--un] and (2z, n)[Z-Vn] are

diophantine.
Proof. By Lemma 3, (2y, n)[y--(a)] is diophantine, then it ollows

that (2x, n)[X--Un] and (2z, n)[z-v] are diophantine by Lemma 1-(5).
Lemma 5. (2x, n)[x--(a)2n] and (2y, n, x)[y-()] are diophantine.
Proof. By Lemma 1-(7) and Lemma 4.
Definition 3. For a polynomial P satisfying (.), we define poly-

nomials P1, P, and numbers n, t, z such that"
(Vri)<(]z)...(]z)[(P(x, y, , z., ..., z)-O) and (v--z)]

(])<(]z)... (]z)[P(x, y, , z, ..., z)-- 0]
And

(a)(z). (z)[P(a, , n, x, y, z, ..., z)--0]
--(a)(z)... (z+)[[(u.) (u) Px(x, y, a, z, ..., z)] and

[(u.)]z+.z] and [z+.z++z+.u.--l] and
[z+x-z/.(u.)-] and [(u.)tl()]

and (V,)[(u.)t ()]
where B is a maximal value o solutions z,...,z o the equation
Px(x, y, ], z,..., z)--0 for 0]y..Let (x, y) be such a polynomial
that

(wi)<(Vzl),<... (Z)z<[] P(x, y, , z, ..., z) I<(x, y)],
and let n be a number such that (v)*(x, y) and 34n and z----B.
(Note that the existence o P and P. is derived rom Lemma 5.)

2. Next, we prove the ollowing
Theorem 1.

(y)(k)<(z)... (z)[P(x, y, k, z, ..., z)--O]
=_ (a)($)(z)(_ y)(n)(a). (a)[P(a, , n, x, y, a, ..., a)--0
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Proof. First, we assume the left side of the equivalence and show
that it implies the right side. From Lemma 1-(5), we have Un" Vn
"V2-,.n=U2. and from Lemma 1-(6), Vn, V2.n,’" ", V2-.n are relatively
prime. The remaining can be obtained from Chinese Remainder
Theorem and Un =- V2n (mod V2n) for 0 i y.

Next, assume the right side and prove the left side.
Let z be Rem (a, (V.n)) Z (ky). From (Vn) (X, y) and

V2nlU2n, we have

thus

Hence,

(Vn)Z P(x, y, a,

(v2)z Pl(x, y, a’, z, ..., z) for some a’y.

3. Now we have"
P(x, y, i, z, ..., z,,)--O.

Theorem 2. Recursively enumerable predicates are diophantine.
Proof. By (.), Lemma 4, Lemma 5 and Theorem 1.
Thus, we have obtained the negative solution o Hilbert’s 10th

problem.
It is very interesting to consider the relation between the positive

results and the negative ones.
In Baker [1], the homogeneity of polynomials is used essentially.

But it is impossible to extend the number of variables of the polynomi-
als, even if the homogeneity of the polynomials is used. We should
remark the ollowing result"

There exists a positive integer m and an irreducible g-ary form f
of degree n>= 3 with integer coefficients such that the existence of solu-
tions of the equation

f(xl, x2, ..., x,) m
can not be determined effectively.
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