96. Cyclotomic Algebras over a 2-adic Field

By Toshihiko Yamada
Department of Mathematics, Tokyo Metropolitan University
(Comm. by Kenjiro Shoda, m. J. A., June 12, 1973)

1. Let K be a finite extension of Q_{2}, the rational 2 -adic numbers. E. Witt [5] proved that the order of the Schur subgroup $S(K)$ of the Brauer group $\operatorname{Br}(K)$ is 1 or 2. So, given any finite extension K of Q_{2}, we must tell whether $S(K)=1$ or $S(K)$ is the subgroup of $\operatorname{Br}(K)$ of order 2. This problem was completely settled by the author [3]. The purpose of the present paper is to outline another proof of the result. (The details will appear in the lecture note [4].) The idea of the new proof is the same as the one devised by the author in [1], where for any finite extension K of the rational p-adic numbers Q_{p}, p being any odd prime, the Schur subgroup $S(K)$ was determined.

Notation. For a positive integer n, ζ_{n} is a primitive nth root of unity. Let $L \supset k$ be extensions of Q_{p} such that L / k is normal. Then $G(L / k)$ is the Galois group of L over k. $\quad e_{L / k}$ (resp. $f_{L / k}$) denotes the ramification index (resp. the residue class degree) of L / k.
2. Throughout this paper, k denotes a cyclotomic extension of Q_{2}. Let B be a cyclotomic algebra over k :

$$
\begin{gathered}
B=(\beta, k(\zeta) / k)=\sum_{\sigma \in G} k(\zeta) u_{\sigma} \text { (direct sum), } \quad\left(u_{1}=1\right), \\
u_{\sigma} u_{\tau}=\beta(\sigma, \tau) u_{\sigma \tau}, \quad u_{\sigma} x=x^{\sigma} u_{\sigma} \quad(x \in k(\zeta)),
\end{gathered}
$$

where ζ is a root of unity, $G=G(k(\zeta) / k)$, and β is a factor set of $k(\zeta) / k$ such that the values of β are roots of unity in $k(\zeta)$. Let $L=Q_{2}\left(\zeta^{\prime}\right)$ be a cyclotomic field containing $k(\zeta)$, ζ^{\prime} being some root of unity. Let Inf denote the inflation map from $H^{2}(k(\zeta) / k)$ into $H^{2}(L / k)$. Then $B \sim(\operatorname{Inf}(\beta), L / k)$. Thus we always assume that any cyclotomic algebra B over k is of the form: $B=(\beta, L / k), L$ being a cyclotomic field over Q_{2}. We can write $L=Q_{2}\left(\zeta_{2 n}, \zeta_{r}\right), r=2^{a}-1$, where $a=f_{L / Q_{2}}$ and n is some non-negative integer. If $n \leq 1$, then $B \sim 1$, because the extension L / k is unramified and the factor set β consists of roots of unity. So we assume $n \geq 2$. We have $\left.\beta(\sigma, \tau)=\alpha(\sigma, \tau) \gamma(\sigma, \tau), \alpha(\sigma, \tau) \in\left\langle\zeta_{2}\right\rangle\right\rangle, \gamma(\sigma, \tau) \in\left\langle\zeta_{r}\right\rangle$, for any σ, τ of $G(L / k)$, whence $(\beta, L / k) \sim(\alpha, L / k) \otimes_{k}(\gamma, L / k)$.

Proposition 1 (Witt [5, pp. 242-243]). ($\gamma, L / k) \sim 1$.
Remark. The result can also be proved by the techniques that will be developed in this paper. (See [4].) Another proof was already given in [3].

Thus we only need to study the following type of cyclotomic
algebra:

$$
\begin{gather*}
B=(\beta, L / k), \quad L=Q_{2}\left(\zeta_{2 n}, \zeta_{r}\right), \quad n \geq 2, \quad r=2^{a}-1, \tag{1}\\
\beta(\sigma, \tau) \in\left\langle\zeta_{2 n}\right\rangle \quad(\sigma, \tau \in G(L / k)) .
\end{gather*}
$$

For the remainder of this section, we assume $n \geq 3$. Let \mathfrak{S}_{0} denote the inertia group of L / Q_{2}. Then, $\mathfrak{S}_{0}=\langle\theta\rangle \times\langle\iota\rangle, \theta^{2 n-2}=\iota^{2}=1$, where

$$
\begin{equation*}
\zeta_{2 n}^{\theta}=\zeta_{2 n}^{5}, \quad \zeta_{2 n}^{\prime}=\zeta_{2 n}^{-1}, \tag{2}
\end{equation*}
$$

$\zeta_{r}^{\theta}=\zeta_{r}^{c}=\zeta_{r} . \quad$ A Frobenius automorphism ξ of L / Q_{2} is given by $\zeta_{r}^{\xi}=\zeta_{r}^{2}$, $\zeta_{2_{n}^{\xi}}^{\xi}=\zeta_{2 n}$. The subgroups of \mathfrak{S}_{0} are classified into three types: (i) $\left\langle\theta^{2 n}\right\rangle$ $\times\langle\iota\rangle$, (ii) $\left\langle\theta^{2 \lambda}\right\rangle,(\lambda=0,1, \cdots, n-2)$, (iii) $\left\langle\Delta \theta^{2 \nu}\right\rangle,(\nu=0,1, \cdots, n-3)$. Let \mathfrak{F} denote the inertia group of L / k. Then $\mathscr{S}_{\mathcal{L}}=\mathscr{S}_{0} \cap G(L / k)$, so $\mathscr{S}_{\mathcal{L}}$ is in one of the above three types.

Theorem 1. Notation being as above, if $\mathscr{S}=\left\langle\theta^{2 \lambda}\right\rangle(0 \leq \lambda \leq n-2)$, or if $S_{2}=\left\langle\theta^{2 \nu} \iota\right\rangle(0 \leq \nu \leq n-3)$, then $B=(\beta, L / k) \sim 1$.

Before proving the theorem, we will represent a lemma which was one of the ideas in [1].

Lemma 1 (Yamada [1]). Let p be a prime number and Q_{p} the field of rational p-adic numbers. Let $\Lambda \supset K$ be finite extensions of Q_{p} such that Λ / K is normal. Set $e=e_{A / K}, f=f_{A / K}$. Let z be a natural number divisible by ef $=[\Lambda: K]$ and let Ω be the unramified extension of K of degree z. Set $\Lambda^{\prime}=\Lambda \cdot \Omega$. Then $e_{\Lambda^{\prime} / K}=e$ and $f_{\Lambda^{\prime} / K}=z$. Furthermore, there is a totally ramified extension F of K in Λ^{\prime} of degree e so that $F \cdot \Omega=\Lambda^{\prime}$ and $F \cap \Omega=K$. That is, there exists a Frobenius automorphism φ of Λ^{\prime} / K of order z. The inertia group of Λ^{\prime} / K is canonically isomorphic to that of Λ / K.

Proof (The reader should refer [1, p. 302]). Since an unramified extension is uniquely determined by its degree, it follows that $[\Omega \cap \Lambda: K]=f$. Hence $\Lambda^{\prime}=\Lambda \cdot \Omega$ is normal over K of degree $z e, \Lambda^{\prime} / \Omega$ is totally ramified of degree e, and $\Lambda^{\prime} / \Lambda$ is unramified of degree z / f. Set $G\left(\Lambda^{\prime} / K\right)=G, G\left(\Lambda^{\prime} / \Lambda\right)=H$, and $G\left(\Lambda^{\prime} / \Omega\right)=H_{1}$. Then $H \cap H_{1}=1,|G / H|$ $=e f$, and $\left|G / H_{1}\right|=z$. This implies that for any element σ of G, σ^{z} belongs to $H \cap H_{1}=1$, i.e. $\sigma^{z}=1$. The assertions of the lemma easily follow.

Proof of Theorem 1. Keeping the notation of Theorem 1, we apply Lemma 1 to the extension L / k. Recall that $L=Q\left(\zeta_{2 n}, \zeta_{r}\right), r=2^{a}$ $-1, G\left(L / Q_{2}\right)=\langle\theta\rangle \times\langle\iota\rangle \times\langle\xi\rangle$. Put $e=e_{L / k}, f=f_{L / k}$. Denote by Ω the unramified extension of k of degree ef and set $L^{\prime}=L \cdot \Omega=Q_{2}\left(\zeta_{2 n}, \zeta_{r^{\prime}}\right)$, $r^{\prime}=2^{a e}-1$. Then Lemma 1 implies that there exists a totally ramified extension F of k of degree e such that $F \cdot \Omega=L^{\prime}, F \cap \Omega=k$, and $G\left(L^{\prime} / \Omega\right)$ is canonically isomorphic to \mathscr{S}, the inertia group of L / k. We can describe the circumstances more explicitly. We may obviously write $G\left(L^{\prime} \mid Q_{2}\right)=\langle\theta\rangle \times\langle\iota\rangle \times\left\langle\xi^{\prime}\right\rangle$, where θ and ι are defined by (2) with $\zeta_{r^{\prime}}^{\theta}=\zeta_{r^{\prime}}^{\prime}$ $=\zeta_{r^{\prime}}$, and $\zeta_{r^{\prime}}^{\xi^{\prime}}=\zeta_{r^{\prime}}^{2}, \zeta_{2 \xi_{n}^{\prime}}^{\xi^{\prime}}=\zeta_{2 n}$. Let $\mathscr{S}_{g^{\prime}}$ denote the inertia group of L^{\prime} / k. If $\mathfrak{N}=\left\langle\theta^{2 \lambda}\right\rangle \subset G(L / k)$ then $\mathscr{S}^{\prime}=\left\langle\theta^{22}\right\rangle \subset G\left(L^{\prime} / k\right)$. Also, if $\mathfrak{N}=\left\langle\theta^{2 \nu} \iota\right\rangle$ then
$\mathfrak{S}^{\prime}=\left\langle\theta^{2 \lambda} \iota\right\rangle$. Put $f^{\prime}=f_{k / Q_{2}} .\left(f^{\prime} f=a\right)$. Let η be a Frobenius automorphism
 for some integers x, y. Then, $\eta^{\prime}=\left(\xi^{\prime}\right)^{f^{\prime}} \theta^{x} c^{y}$ is a Frobenius automorphism of L^{\prime} / k and $\left(\eta^{\prime}\right)^{e f}=1,\left(e f=f_{L^{\prime} / k}\right)$. Hence $G\left(L^{\prime} / k\right)=\mathscr{S}_{\varepsilon^{\prime}} \times\left\langle\eta^{\prime}\right\rangle$. Note that $B=(\beta, L / k) \sim\left(\operatorname{Inf}(\beta), L^{\prime} / k\right)$, where Inf denotes the inflation map of $H^{2}(L / k)$ into $H^{2}\left(L^{\prime} / k\right)$. Therefore, in order to prove Theorem 1 we may assume that the extension L / k has a Frobenius automorphism η of order $f, f=f_{L / k}$, so that $G(L / k)=\mathscr{S} \times\langle\eta\rangle$. As is remarked above, we write $\eta=\xi^{f^{\prime}} \theta^{x} l^{y},(y=0,1)$.
(i) The case $\mathscr{S}_{2}=\left\langle\theta^{2 \pi}\right\rangle,(0 \leq \lambda \leq n-2)$. Suppose first that $y=1$, so $\eta=\xi^{f^{\prime}} \theta^{x} \iota$. Set $\tau=\theta^{2 \lambda}$. We have $B=(\beta, L / k)=\sum L u_{\sigma}=\sum_{i=0}^{e-1} \sum_{j=0}^{f=1} L u_{\tau}^{i} u_{\eta}^{j}$, $e=2^{n-2-\lambda}$. Let $\beta(\tau, \eta) / \beta(\eta, \tau)=\zeta_{2 n}^{b}$, so $u_{\tau} u_{\eta}=\zeta_{2 n}^{b} u_{\eta} u_{\tau}$. Since $u_{\tau} u_{\tau}^{e} u_{\tau}^{-1}=u_{\tau}^{e}$, we have $u_{\tau}^{e}=\zeta_{2 \lambda+2}^{c}$ for some integer c. It follows from the relation [2, (1.11)] that

$$
\begin{equation*}
\zeta_{2 \lambda+2}^{c A}=\left(\zeta_{2 \lambda+2}^{c}\right)^{n-1}=\left(\zeta_{2 n}^{-b}\right)^{1+\tau+\cdots+\varepsilon^{e-1}}=\zeta_{2 n}^{-b S}, \tag{3}
\end{equation*}
$$

where $A=-5^{x}-1$ and $S=1+5^{2 \lambda}+\cdots+\left(5^{2 \lambda}\right)^{e-1}=\left(1-5^{2 n-2}\right) /\left(1-5^{2 \lambda}\right) . \quad S$ (resp. A) is exactly divisible by $2^{n-2-\lambda}$ (resp. 2). By (3) we conclude that $2 \mid b$. Let Y be an integer satisfying $A Y \equiv b\left(\bmod 2^{n}\right)$. (Since $(2, A / 2)=1$ and $2 \mid b$, such an integer Y does exist.) Then $u_{\eta}\left(\zeta_{2 n}^{Y} u_{r}\right)$ $=\zeta_{2 n^{-x} Y-b} u_{\tau} u_{\eta}=\left(\zeta_{2 n}^{Y} u_{r}\right) u_{\eta}$. Let E (resp. F) be the subfield of L over k corresponding to $\langle\tau\rangle$ (resp. $\langle\eta\rangle$) in the sense of Galois theory. We have $B=\sum_{i} \sum_{j} E \cdot F\left(\zeta_{2_{n}}^{Y} u_{\tau}\right)^{i} u_{\eta}^{j} \simeq\left(u_{\eta}^{f}, E / k, \eta\right) \otimes_{k}\left(\left(\zeta_{2 n}^{Y} u_{\tau}\right)^{e}, F / k, \tau\right) \sim(\pm 1, F / k, \tau)$, because $u_{\eta}^{f}= \pm 1,\left(\zeta_{2 n}^{Y} u_{\tau}\right)^{e}=\zeta_{2 n}^{Y(1+\tau+\cdots+\tau e-1)} \beta(\tau, \tau) \beta\left(\tau^{2}, \tau\right) \cdots \beta\left(\tau^{e-1}, \tau\right)= \pm 1$, and E / k is unramified $\left(\zeta_{4} \notin k\right)$. Since $e_{k / Q_{2}}=2^{n-1} / e=2^{1+\lambda}$, it follows that $N_{k / Q_{2}}(-1)=1$, and so the order of the norm residue symbol $(-1, F / k)$ $=\left(N_{k / Q_{2}}(-1), F / Q_{2}\right)=\left(1, F / Q_{2}\right)$ is equal to 1 . Thus, $B \sim 1$, as required.

Suppose next that $y=0$. Then, $\zeta_{4}^{\sigma}=\zeta_{4}$ for every $\sigma \in G(L / k)$, so $\zeta_{4} \in k$. It follows from the Witt's result [5, Satz 12, p. 245] that B $=(\beta, L / k) \sim 1$. (This can be also proved by the same techniques as above. The details will appear in [4].)
(ii) The case $\mathscr{S}=\left\langle\theta^{2 \nu}\right\rangle,(0 \leq \nu \leq n-3)$. Set $\tau=\theta^{2 \nu}{ }^{2}$. Since $u_{\tau} u_{\tau}^{e} u_{\tau}^{-1}$ $=u_{\tau}^{e}$, it follows that $u_{\tau}^{e}= \pm 1, e=2^{n-2-\nu}$. Let $u_{\tau} u_{\eta}=\zeta_{2 n}^{b} u_{\eta} u_{\tau}$. By the relation [2, (1.11)] we conclude that $1=(\pm 1)^{\eta-1}=\left(\zeta_{2 n}^{-b}\right)^{1+\tau+\cdots+\tau^{e-1}}=\zeta_{2 n}^{-b T}, T$ $=1+\left(-5^{2 \nu}\right)+\cdots+\left(-5^{2 \nu}\right)^{e-1}=\left(1-5^{2 n-2}\right) /\left(1+5^{2 \nu}\right) . \quad T$ is exactly divisible by 2^{n-1}, so $2 \mid b$. Let X be an integer satisfying $\left(1+5^{2 \nu}\right) X$ $\equiv b\left(\bmod 2^{n}\right)$. Then $u_{\tau}\left(\zeta_{2 n}^{X} u_{\eta}\right)=\zeta_{22^{-52} X+b} u_{\eta} u_{\tau}=\left(\zeta_{2 n}^{X} u_{\eta}\right) u_{\tau}$. Let $E($ resp. $F)$ be the subfield of L over k corresponding to $\langle\tau\rangle$ (resp. $\langle\eta\rangle$) in the sense of Galois theory. Then we have $B=\sum \sum E \cdot F u_{\tau}^{i}\left(\zeta_{2 n}^{X} u_{\eta}\right)^{j} \simeq\left(\left(\zeta_{2 n}^{X} u_{\eta}\right)^{f}, E / k, \eta\right)$ $\otimes_{k}\left(u_{\tau}^{e}, F / k, \tau\right) \sim(\pm 1, F / k, \tau)$. Since $2 \mid e_{k / Q_{2}}$, the same argument as in the case (i) yields that $B \sim 1$. This completes the proof of Theorem 1.

Remark. If $\mathscr{S}=\left\langle\theta^{2 \pi}\right\rangle \times\langle\iota\rangle(0 \leq \lambda \leq n-2)$, then the computation of invariant of the cyclotomic algebra $B=(\beta, L / k)$ is a bit complicated (in
 will be dealt with in the subsequent paper.
3. Let h be the smallest non-negative integer such that k is contained in $Q_{2}\left(\zeta_{2 h m}\right)$ for some odd integer $m . \quad h=0$ if and only if k / Q_{2} is unramified. Set $M=k\left(\zeta_{2 h}\right), f=f_{M / Q_{2}}$. Then $M=Q_{2}\left(\zeta_{2 h}, \zeta_{2 f-1}\right)$ and M is the minimal cyclotomic field containing k. If E is the maximal unramified extension of k in M, then $M=E\left(\zeta_{4}\right)(h \neq 0)$. Suppose that $h \neq 0$ and $k\left(\zeta_{4}\right) / k$ is ramified. Then M / E is also ramified and $h \geq 3$. Let ω be the generator of $G(M / E)\left(\omega^{2}=1\right)$. Let $\zeta_{2 h}^{\omega}=\zeta_{2 h}^{z}$. Then either $z \equiv-1$ or $z \equiv-1+2^{h-1}\left(\bmod 2^{h}\right)$. (These results follow from elementary properties of local fields and have been proved in [3].)

Theorem 2 (Yamada [3]). Notation is the same as above.
(I) If $k\left(\zeta_{4}\right) / k$ is ramified, then only three cases arise: i) $h=0$, ii) $h \geq 3, z \equiv-1\left(\bmod 2^{h}\right)$, iii) $h \geq 3, z \equiv-1+2^{h-1}\left(\bmod 2^{h}\right)$. For the cases i) and ii), $S(k)$ is the subgroup of order 2 of $\operatorname{Br}(k)$. For the case iii), $S(k)=1$.
(II) If $k\left(\zeta_{4}\right) / k$ is unramified, then $S(k)=1$.

Proof. Let $B=(\beta, L / k)$ be a cyclotomic algebra over k given by (1). Then, $L \supset M$, so $n \geq h$. We also keep the notation of Theorem 1. \mathfrak{F} is the inertia group of L / k. If $k\left(\zeta_{4}\right) / k$ is unramified, then either $n=2, \mathscr{S}_{2}=1$ or $n \geq 3, \mathscr{S}_{2}=\left\langle\theta^{2 \lambda}\right\rangle$ for some λ. Hence, Theorem 1 yields that $B \sim 1$, whence $S(k)=1$. If $k\left(\zeta_{4}\right) / k$ is ramified, $h \geq 3$, and $z \equiv-1$ $+2^{h-1}\left(\bmod 2^{h}\right)$, then $\mathfrak{S}=\left\langle\theta^{2 \nu} \iota\right\rangle$ for some $\nu(0 \leq \nu \leq n-3)$. It follows from Theorem 1 that $B \sim 1$, whence $S(k)=1$.

Finally suppose that $k\left(\zeta_{4}\right) / k$ is ramified and that either $h=0$, or $h \geq 3$, $z \equiv-1\left(\bmod 2^{h}\right)$. Put $l=2$ for $h=0$ and $l=h$ for $h \geq 3$. Let L be the unramified extension of $k\left(\zeta_{22}\right)$ of degree 2 . Then $L=Q_{2}\left(\zeta_{2 l}, \zeta_{2 f^{\prime}-1}\right)$, f^{\prime} $=f_{L / Q_{2}}$. It turns out that $e_{L / k}=2$ and that there is a Frobenius automorphism φ of order $f=f_{L / k}$, whence $G(L / k)=\langle\omega\rangle \times\langle\varphi\rangle, \omega^{2}=\varphi^{f}=1$, $\zeta_{2 l}^{\omega}=\zeta_{2 l}^{-1}$. Let $\zeta_{2 l}^{\varphi}=\zeta_{2 l}^{t}, 3 \leq t \leq 2^{l}+1$. Set $t=1+2^{a} m,(2, m)=1$. It can be shown that $t^{f}-1$ is divisible by $2^{l+1} m$. Set $y=\left(t^{f}-1\right) / 2^{l+1} m$. Then the following cyclotomic algebra B over k has Hasse invariant 1/2:

$$
\begin{aligned}
& B=\sum_{i=0}^{1} \sum_{j=0}^{f-1} L u_{\omega}^{i} u_{\varphi}^{j} \quad \text { (direct sum) } \\
& u_{\omega} u_{\varphi}=\zeta_{22} u_{\varphi} u_{\omega}, \quad u_{\omega}^{2}=1, \quad u_{\varphi}^{f}=\zeta_{2 a}^{-y} .
\end{aligned}
$$

(For the proof, see [3].) This completes the proof of Theorem 2.
Remark. For any finite extension K of $Q_{2}, S(K)$ is readily determined from Theorem 2 (cf. [3, Theorem 3]).

References

[1] T. Yamada: Characterization of the simple components of the group algebras over the p-adic number field. J. Math. Soc. Japan, 23, 295-310 (1971).
[2] --: The Schur subgroup of the Brauer group. I (to appear in J. Algebra).
[3] -: The Schur subgroup of a 2-adic field (to appear).
[4] -: The Schur Subgroup. Queen's Papers (to appear).
[5] E. Witt: Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper. J. reine angew. Math., 190, 231-245 (1952).

