96. Cyclotomic Algebras over a 2-adic Field

By Toshihiko YAMADA

Department of Mathematics, Tokyo Metropolitan University

(Comm. by Kenjiro SHODA, M. J. A., June 12, 1973)

1. Let K be a finite extension of Q_2 , the rational 2-adic numbers. E. Witt [5] proved that the order of the Schur subgroup S(K) of the Brauer group Br(K) is 1 or 2. So, given any finite extension K of Q_2 , we must tell whether S(K)=1 or S(K) is the subgroup of Br(K) of order 2. This problem was completely settled by the author [3]. The purpose of the present paper is to outline another proof of the result. (The details will appear in the lecture note [4].) The idea of the new proof is the same as the one devised by the author in [1], where for any finite extension K of the rational p-adic numbers Q_p , p being any odd prime, the Schur subgroup S(K) was determined.

Notation. For a positive integer n, ζ_n is a primitive nth root of unity. Let $L \supset k$ be extensions of Q_p such that L/k is normal. Then G(L/k) is the Galois group of L over k. $e_{L/k}$ (resp. $f_{L/k}$) denotes the ramification index (resp. the residue class degree) of L/k.

2. Throughout this paper, k denotes a cyclotomic extension of Q_2 . Let B be a cyclotomic algebra over k:

$$B = (\beta, k(\zeta)/k) = \sum_{\sigma \in G} k(\zeta) u_{\sigma} \text{ (direct sum)}, \qquad (u_1 = 1),$$
$$u_{\sigma} u_{\tau} = \beta(\sigma, \tau) u_{\sigma\tau}, \qquad u_{\sigma} x = x^{\sigma} u_{\sigma} \qquad (x \in k(\zeta)),$$

where ζ is a root of unity, $G = G(k(\zeta)/k)$, and β is a factor set of $k(\zeta)/k$ such that the values of β are roots of unity in $k(\zeta)$. Let $L = Q_2(\zeta')$ be a cyclotomic field containing $k(\zeta)$, ζ' being some root of unity. Let Inf denote the inflation map from $H^2(k(\zeta)/k)$ into $H^2(L/k)$. Then $B \sim (Inf(\beta), L/k)$. Thus we always assume that any cyclotomic algebra B over k is of the form: $B = (\beta, L/k)$, L being a cyclotomic field over Q_2 . We can write $L = Q_2(\zeta_{2n}, \zeta_r)$, $r = 2^n - 1$, where $a = f_{L/Q_2}$ and n is some non-negative integer. If $n \leq 1$, then $B \sim 1$, because the extension L/kis unramified and the factor set β consists of roots of unity. So we assume $n \geq 2$. We have $\beta(\sigma, \tau) = \alpha(\sigma, \tau)\gamma(\sigma, \tau)$, $\alpha(\sigma, \tau) \in \langle \zeta_{2n} \rangle$, $\gamma(\sigma, \tau) \in \langle \zeta_r \rangle$, for any σ , τ of G(L/k), whence $(\beta, L/k) \sim (\alpha, L/k) \otimes_k(\gamma, L/k)$.

Proposition 1 (Witt [5, pp. 242–243]). $(\gamma, L/k) \sim 1$.

Remark. The result can also be proved by the techniques that will be developed in this paper. (See [4].) Another proof was already given in [3].

Thus we only need to study the following type of cyclotomic

Cyclotomic Algebras over 2-adic Field

algebra:

$$B = (\beta, L/k), \quad L = Q_2(\zeta_{2n}, \zeta_r), \quad n \ge 2, \quad r = 2^a - 1, \quad (1)$$

$$\beta(\sigma, \tau) \in \langle \zeta_{2n} \rangle \quad (\sigma, \tau \in G(L/k)).$$

For the remainder of this section, we assume $n \ge 3$. Let \mathfrak{H}_0 denote the inertia group of L/Q_2 . Then, $\mathfrak{H}_0 = \langle \theta \rangle \times \langle \iota \rangle$, $\theta^{2^{n-2}} = \iota^2 = 1$, where

$$\zeta_{2^n}^{\scriptscriptstyle heta} = \zeta_{2^n}^{\scriptscriptstyle 5}, \qquad \zeta_{2^n}^{\scriptscriptstyle t} = \zeta_{2^n}^{\scriptscriptstyle -1}, \qquad (2)$$

 $\zeta_r^{\theta} = \zeta_r^{\iota} = \zeta_r$. A Frobenius automorphism ξ of L/Q_2 is given by $\zeta_r^{\xi} = \zeta_r^2$, $\zeta_{2n}^{\xi} = \zeta_{2n}$. The subgroups of \mathfrak{F}_0 are classified into three types: (i) $\langle \theta^{2\lambda} \rangle$ $\times \langle \iota \rangle$, (ii) $\langle \theta^{2\lambda} \rangle$, ($\lambda = 0, 1, \dots, n-2$), (iii) $\langle \iota \theta^{2\nu} \rangle$, ($\nu = 0, 1, \dots, n-3$). Let \mathfrak{F} denote the inertia group of L/k. Then $\mathfrak{F} = \mathfrak{F}_0 \cap G(L/k)$, so \mathfrak{F} is in one of the above three types.

Theorem 1. Notation being as above, if $\mathfrak{H} = \langle \theta^{2^{\lambda}} \rangle (0 \leq \lambda \leq n-2)$, or if $\mathfrak{H} = \langle \theta^{2^{\nu}} \iota \rangle (0 \leq \nu \leq n-3)$, then $B = (\beta, L/k) \sim 1$.

Before proving the theorem, we will represent a lemma which was one of the ideas in [1].

Lemma 1 (Yamada [1]). Let p be a prime number and Q_p the field of rational p-adic numbers. Let $\Lambda \supset K$ be finite extensions of Q_p such that Λ/K is normal. Set $e = e_{A/K}$, $f = f_{A/K}$. Let z be a natural number divisible by $ef = [\Lambda: K]$ and let Ω be the unramified extension of K of degree z. Set $\Lambda' = \Lambda \cdot \Omega$. Then $e_{\Lambda'/K} = e$ and $f_{\Lambda'/K} = z$. Furthermore, there is a totally ramified extension F of K in Λ' of degree e so that $F \cdot \Omega = \Lambda'$ and $F \cap \Omega = K$. That is, there exists a Frobenius automorphism φ of Λ'/K of order z. The inertia group of Λ'/K is canonically isomorphic to that of Λ/K .

Proof (The reader should refer [1, p. 302]). Since an unramified extension is uniquely determined by its degree, it follows that $[\Omega \cap \Lambda: K] = f$. Hence $\Lambda' = \Lambda \cdot \Omega$ is normal over K of degree ze, Λ'/Ω is totally ramified of degree e, and Λ'/Λ is unramified of degree z/f. Set $G(\Lambda'/K) = G$, $G(\Lambda'/\Lambda) = H$, and $G(\Lambda'/\Omega) = H_1$. Then $H \cap H_1 = 1$, |G/H| = ef, and $|G/H_1| = z$. This implies that for any element σ of G, σ^z belongs to $H \cap H_1 = 1$, i.e. $\sigma^z = 1$. The assertions of the lemma easily follow.

Proof of Theorem 1. Keeping the notation of Theorem 1, we apply Lemma 1 to the extension L/k. Recall that $L=Q(\zeta_{2^n}, \zeta_r), r=2^a -1, G(L/Q_2)=\langle\theta\rangle\times\langle\iota\rangle\times\langle\xi\rangle$. Put $e=e_{L/k}, f=f_{L/k}$. Denote by \mathcal{Q} the unramified extension of k of degree ef and set $L'=L\cdot\mathcal{Q}=Q_2(\zeta_{2^n}, \zeta_r), r'=2^{ae}-1$. Then Lemma 1 implies that there exists a totally ramified extension F of k of degree e such that $F\cdot\mathcal{Q}=L', F\cap\mathcal{Q}=k$, and $G(L'/\mathcal{Q})$ is canonically isomorphic to \mathfrak{H} , the inertia group of L/k. We can describe the circumstances more explicitly. We may obviously write $G(L'/Q_2)=\langle\theta\rangle\times\langle\iota\rangle\times\langle\xi'\rangle$, where θ and ι are defined by (2) with $\zeta_{r'}^{\theta}=\zeta_{r'}^{\iota}$, $=\zeta_{r'}$, and $\zeta_{r'}^{\xi'}=\zeta_{r'}^{\sharp}, \zeta_{2^n}^{\xi'}=\zeta_{2^n}$. Let \mathfrak{H} denote the inertia group of L'/k. If $\mathfrak{H}=\langle\theta^{2^\lambda}\rangle\subset G(L/k)$ then $\mathfrak{H}=\langle\theta^{2^\lambda}\rangle\subset G(L'/k)$. Also, if $\mathfrak{H}=\langle\theta^{2^\nu}\iota\rangle$

No. 6]

 $\mathfrak{Y}' = \langle \theta^{2^{\lambda}} c \rangle$. Put $f' = f_{k/Q_2}$. (f'f = a). Let η be a Frobenius automorphism of L/k. Regarding η as an automorphism of L/Q_2 , we write $\eta = \xi^{f'} \theta^x \iota^y$, for some integers x, y. Then, $\eta' = (\xi')^{f'} \theta^x \iota^y$ is a Frobenius automorphism of L'/k and $(\eta')^{ef} = 1$, $(ef = f_{L'/k})$. Hence $G(L'/k) = \mathfrak{H}' \times \langle \eta' \rangle$. Note that $B = (\beta, L/k) \sim (\text{Inf}(\beta), L'/k)$, where Inf denotes the inflation map of $H^2(L/k)$ into $H^2(L'/k)$. Therefore, in order to prove Theorem 1 we may assume that the extension L/k has a Frobenius automorphism η of order $f, f = f_{L/k}$, so that $G(L/k) = \mathfrak{H} \times \langle \eta \rangle$. As is remarked above, we write $\eta = \xi^{f'} \theta^x \iota^y$, (y = 0, 1).

(i) The case $\mathfrak{H} = \langle \theta^{2^{\lambda}} \rangle$, $(0 \leq \lambda \leq n-2)$. Suppose first that y=1, so $\eta = \xi^{f'} \theta^{x_{\ell}}$. Set $\tau = \theta^{2^{\lambda}}$. We have $B = (\beta, L/k) = \sum L u_{\sigma} = \sum_{i=0}^{e-1} \sum_{j=0}^{f-1} L u_{\tau}^{i} u_{\eta}^{j}$, $e = 2^{n-2-\lambda}$. Let $\beta(\tau, \eta) / \beta(\eta, \tau) = \zeta_{2^{n}}^{b}$, so $u_{\tau} u_{\eta} = \zeta_{2^{n}}^{b} u_{\eta} u_{\tau}$. Since $u_{\tau} u_{\tau}^{e} u_{\tau}^{-1} = u_{\tau}^{e}$, we have $u_{\tau}^{e} = \zeta_{2^{\lambda+2}}^{e}$ for some integer c. It follows from the relation [2, (1.11)] that

$$\zeta_{2^{\lambda+2}}^{cA} = (\zeta_{2^{\lambda+2}}^c)^{\eta-1} = (\zeta_{2^n}^{-b})^{1+\tau+\dots+\tau^{e-1}} = \zeta_{2^n}^{-bS}, \qquad (3)$$

where $A = -5^x - 1$ and $S = 1 + 5^{2^{\lambda}} + \cdots + (5^{2^{\lambda}})^{e^{-1}} = (1 - 5^{2^{n-2}})/(1 - 5^{2^{\lambda}})$. S (resp. A) is exactly divisible by $2^{n-2-\lambda}$ (resp. 2). By (3) we conclude that $2 \mid b$. Let Y be an integer satisfying $AY \equiv b \pmod{2^n}$. (Since (2, A/2) = 1 and $2 \mid b$, such an integer Y does exist.) Then $u_{\eta}(\zeta_{2^n}^y u_{\tau})$ $= \zeta_{2^{n}}^{-5^xY-b}u_{\tau}u_{\eta} = (\zeta_{2^n}^y u_{\tau})u_{\eta}$. Let E (resp. F) be the subfield of L over k corresponding to $\langle \tau \rangle$ (resp. $\langle \eta \rangle$) in the sense of Galois theory. We have $B = \sum_i \sum_j E \cdot F(\zeta_{2^n}^y u_{\tau})^i u_{\eta}^j \simeq (u_{\eta}^f, E/k, \eta) \otimes_k ((\zeta_{2^n}^y u_{\tau})^e, F/k, \tau) \sim (\pm 1, F/k, \tau),$ because $u_{\eta}^f = \pm 1$, $(\zeta_{2^n}^x u_{\tau})^e = \zeta_{2^{n+1}+\cdots+\tau^{e^{-1}}}^s \beta(\tau, \tau)\beta(\tau^2, \tau) \cdots \beta(\tau^{e^{-1}}, \tau) = \pm 1$, and E/k is unramified $(\zeta_4 \notin k)$. Since $e_{k/Q_2} = 2^{n-1}/e = 2^{1+\lambda}$, it follows that $N_{k/Q_2}(-1) = 1$, and so the order of the norm residue symbol (-1, F/k) $= (N_{k/Q_2}(-1), F/Q_2) = (1, F/Q_2)$ is equal to 1. Thus, $B \sim 1$, as required.

Suppose next that y=0. Then, $\zeta_4^{\sigma}=\zeta_4$ for every $\sigma \in G(L/k)$, so $\zeta_4 \in k$. It follows from the Witt's result [5, Satz 12, p. 245] that $B = (\beta, L/k) \sim 1$. (This can be also proved by the same techniques as above. The details will appear in [4].)

(ii) The case $\mathfrak{H} = \langle \theta^{2\nu} \iota \rangle$, $(0 \leq \nu \leq n-3)$. Set $\tau = \theta^{2\nu} \iota$. Since $u_r u_r^e u_r^e u_r^e = u_r^e$, it follows that $u_r^e \pm 1$, $e = 2^{n-2-\nu}$. Let $u_r u_\eta = \zeta_{2n}^b u_\eta u_r$. By the relation [2, (1.11)] we conclude that $1 = (\pm 1)^{\eta-1} = (\zeta_{2n}^{-b})^{1+\tau+\dots+\tau^{e-1}} = \zeta_{2n}^{-bT}$, $T = 1 + (-5^{2\nu}) + \dots + (-5^{2\nu})^{e^{-1}} = (1-5^{2^{n-2}})/(1+5^{2\nu})$. T is exactly divisible by 2^{n-1} , so $2 \mid b$. Let X be an integer satisfying $(1+5^{2\nu})X \equiv b \pmod{2^n}$. Then $u_r (\zeta_{2n}^x u_\eta) = \zeta_{2n}^{-5^{2\nu}X+b} u_\eta u_r = (\zeta_{2n}^x u_\eta) u_r$. Let E (resp. F) be the subfield of L over k corresponding to $\langle \tau \rangle$ (resp. $\langle \eta \rangle$) in the sense of Galois theory. Then we have $B = \sum \sum E \cdot F u_r^i (\zeta_{2n}^x u_\eta)^j \simeq ((\zeta_{2n}^x u_\eta)^f, E/k, \eta) \otimes_k (u_r^e, F/k, \tau) \sim (\pm 1, F/k, \tau)$. Since $2 \mid e_{k/Q_2}$, the same argument as in the case (i) yields that $B \sim 1$. This completes the proof of Theorem 1.

Remark. If $\mathfrak{H} = \langle \theta^{2^{\lambda}} \rangle \times \langle \iota \rangle$ $(0 \leq \lambda \leq n-2)$, then the computation of invariant of the cyclotomic algebra $B = (\beta, L/k)$ is a bit complicated (in

particular, for the case that $\langle \theta^{2\lambda} \rangle \neq 1$, $x \neq 0$, where $\eta = \xi^{f'} \theta^x \iota^y$). So, it will be dealt with in the subsequent paper.

3. Let h be the smallest non-negative integer such that k is contained in $Q_2(\zeta_{2^hm})$ for some odd integer m. h=0 if and only if k/Q_2 is unramified. Set $M=k(\zeta_{2^h})$, $f=f_{M/Q_2}$. Then $M=Q_2(\zeta_{2^h},\zeta_{2^{f-1}})$ and M is the minimal cyclotomic field containing k. If E is the maximal unramified extension of k in M, then $M=E(\zeta_4)$ $(h\neq 0)$. Suppose that $h\neq 0$ and $k(\zeta_4)/k$ is ramified. Then M/E is also ramified and $h\geq 3$. Let ω be the generator of G(M/E) $(\omega^2=1)$. Let $\zeta_{2^h}^{\omega}=\zeta_{2^h}^{\omega}$. Then either $z\equiv -1$ or $z\equiv -1+2^{h-1} \pmod{2^h}$. (These results follow from elementary properties of local fields and have been proved in [3].)

Theorem 2 (Yamada [3]). Notation is the same as above.

(I) If $k(\zeta_4)/k$ is ramified, then only three cases arise: i) h=0, ii) $h\geq 3$, $z\equiv -1 \pmod{2^h}$, iii) $h\geq 3$, $z\equiv -1+2^{h-1} \pmod{2^h}$. For the cases i) and ii), S(k) is the subgroup of order 2 of Br(k). For the case iii), S(k)=1.

(II) If $k(\zeta_4)/k$ is unramified, then S(k)=1.

Proof. Let $B = (\beta, L/k)$ be a cyclotomic algebra over k given by (1). Then, $L \supset M$, so $n \ge h$. We also keep the notation of Theorem 1. \mathfrak{F} is the inertia group of L/k. If $k(\zeta_4)/k$ is unramified, then either n=2, $\mathfrak{F}=1$ or $n\ge 3$, $\mathfrak{F}=\langle \theta^{2^k} \rangle$ for some λ . Hence, Theorem 1 yields that $B \sim 1$, whence S(k)=1. If $k(\zeta_4)/k$ is ramified, $h\ge 3$, and $z\equiv -1$ $+2^{h-1} \pmod{2^h}$, then $\mathfrak{F}=\langle \theta^{2^\nu} \iota \rangle$ for some $\nu (0 \le \nu \le n-3)$. It follows from Theorem 1 that $B \sim 1$, whence S(k)=1.

Finally suppose that $k(\zeta_i)/k$ is ramified and that either h=0, or $h\geq 3$, $z\equiv -1 \pmod{2^h}$. Put l=2 for h=0 and l=h for $h\geq 3$. Let L be the unramified extension of $k(\zeta_{2^l})$ of degree 2. Then $L=Q_2(\zeta_{2^l},\zeta_{2^{j'}-1})$, $f'=f_{L/Q_2}$. It turns out that $e_{L/k}=2$ and that there is a Frobenius automorphism φ of order $f=f_{L/k}$, whence $G(L/k)=\langle \omega \rangle \times \langle \varphi \rangle$, $\omega^2=\varphi^f=1$, $\zeta_{2^l}^{\omega}=\zeta_{2^l}^{-1}$. Let $\zeta_{2^l}^{\omega}=\zeta_{2^l}^{\iota}$, $3\leq t\leq 2^l+1$. Set $t=1+2^am$, (2,m)=1. It can be shown that t^f-1 is divisible by $2^{l+1}m$. Set $y=(t^f-1)/2^{l+1}m$. Then the following cyclotomic algebra B over k has Hasse invariant 1/2:

$$B = \sum_{i=0}^{1} \sum_{j=0}^{j-1} Lu_{\omega}^{i} u_{\varphi}^{j} \quad \text{(direct sum)}$$
$$u_{\omega} u_{\varphi} = \zeta_{2i} u_{\varphi} u_{\omega}, \quad u_{\omega}^{2} = 1, \quad u_{\varphi}^{f} = \zeta_{2a}^{-y}.$$

(For the proof, see [3].) This completes the proof of Theorem 2.

Remark. For any finite extension K of Q_2 , S(K) is readily determined from Theorem 2 (cf. [3, Theorem 3]).

T. YAMADA

References

- [1] T. Yamada: Characterization of the simple components of the group algebras over the p-adic number field. J. Math. Soc. Japan, 23, 295-310 (1971).
- [2] ----: The Schur subgroup of the Brauer group. I (to appear in J. Algebra).
- [3] ——: The Schur subgroup of a 2-adic field (to appear).
 [4] ——: The Schur Subgroup. Queen's Papers (to appear).
- [5] E. Witt: Die algebraische Struktur des Gruppenringes einer endlichen Gruppe über einem Zahlkörper. J. reine angew. Math., 190, 231-245 (1952).