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1. Introduction. In the information theory, the calculation of
the channel capacity is not easy in general. The calculation method
is known for only memoryless channels and several particular cases.

Finite automata are seen as information channels in various way
(for example, see [1]). A kind of such automata, called a permutation
machine, is described as a stationary 0-memory Markovian channel
([7]). In this paper, we shall give the method to get the capacity of
such channels.

The author is indebted to Professor H. Umegaki for his advice and
encouragement in preparing this paper.

2. Permutation channel. Let -{S, X, r} be a state machine,
i.e., (i) S is a non-empty finite set of states, (ii) X is a non-empty finite
set of input letters, and (iii) r is a mapping from SX to S, called
a transition function. A state machine can be represented by a finite
directed graph G, where states correspond to vertices and transitions
to directed edges indexed by elements in X. Terminology of the
graph theory used here refers to Ore [5]. A directed edge (s, s.) indexed

by x is denoted by s- >s., which exists if and only if r(s, x)=s.. For
such graph, let us assume the following property: (A) For every vertex
s and every input letter x, there eists one and only one directed edge

of the form s- ;s for some state s, i.e., for every input letter x, a
mapping r(., x), which is from S onto S, is a permutation on S. A
state machine, a graph of which satisfies the condition (A), is called a
permutation machine (cf. [3] p. 195).

Let X(I={0, + 1, +_ 2,... }) be an alphabet space, where the state
space X is a set of input letters of a permutation machine. And S be
another alphabet space, where S is a se, of states of the machine. For
any sequence s,s,+.., s,+ of states in S, we define an information chan-
nel by

1 x,+l ,x,+ q’+’8,/_18,+ (eX)v(s,s,+l"’" s,+)=---qs,8,+,,,+,,+
where
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l...if r(s,x)=s’q’5’--
0 else

and N--Card (S). Then can be extended to a stationary channel from
the input space X to the output space S, as , is a kind of Markovian
channels ([7]). Let us call such channel ,, which is derived from a
permutation machine, a permutation channel. An input source, an
output source and compound source are probability measures on X, S,
(X S) respectively. A compound source r(.)--r(. p, ) derived from

and , is defined by (cf. [2])r(C)--[ ,(C)p(d)where C is an x-P
JXI

section of a measurable set C in (X C). And q(B)=r(X B).
Theorem 1. Let be a permutation channel, and p be a Bernoulli

input source, i.e., p(xl...xn)--p(xl)p(x2)...p(xn) for every x,...,xn.
Then an output source q and a compound source r derived from the
source p and the channel , are Markovian.

Proof. r((xs). (xs)):p(x. Xn)(s" s)

p(x...x)%q,. q

And so,
r((xs) (xs) (x_s_))

-r((xs,)... (Xn8n)) /’((X181)’"" (Xn_lSn_l))
--P(Xn)qs._,s. r((XnSn) l(Xn_, 8n_))

or all possible sequence (s...s_i), which shows that the source r is
Markovian. For the output source,

q(s. s)= p(x. x),(s. s)
1’’’

I’’’X

Sn--28n--1
ZnXSn--lSn

where X,_,=(x e X" r(s_, x)=s}, hence we get
q(S S Sn_) q(s S) /q(s S_)

p(x)=q(s]s_). Q.E.D.. The Capacity of permutation channels. The entropy of a
source p is defined by

hen the transmission rate R is R-h+hq--h, where q and f

are the output and compound sources derived from and a channel
reseetively. he stationary capacity of the channel u is defined by
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C--sup R where p moves on all input sources. And the ergodic ca-
p

pacity C is defined by C=sup R, where II’--(p: p is an input source
pII’

and r(.)--r(. p, ,) is ergodic}.
Theorem 2. If, is a permutation channel, then

1

where the supremum is taken all over k-dimensional probability vectors
(pp...p) (p--p(x), k=Card (X)) and Mss----(x:

Proof. The following chain o formulae is valid;
R, h+hq-h

lim p(x...x). ,(s.. "Sn)log,(S’-’Sn):hq--

=hq--lim 1{ (x }
=hq-lim 1{11}

And we know that ([2]),
hq =lim H(S S_ S) NH(S S). 2

he right side of (2) is equal to-- q(){q(l) log q()}.

But q() (zz) ’q,,, p(z)and q(81) (Z) 1 1
xx xeMss x N N

therefore

R hq the right hand side of (1).
The equality is aetuMly achieved by some Bernoulli probability measure
determined by a k-dimensional probability vector (...), as the
output source q becomes Markovian and the equality holds in (2).

Q.E.D.
A channel is ergodie if and only if ergodieity of input source

implies ergodieity of the compound source r. As well known ([4], [6]),
ergodieity of channel implies C=C. We can deduce easily that per-
mutation channels are not ergodie in general, even if the associated
graph is eonneeted, but we get the following"

Theorem . Let G be a graph representing a permutation ma-
chine . If G is (weakly) connected, then for the permutation channel
constructed from , the stationary capacity and the ergodic capacity

consist, i.e., C=C. (Weak connectedness implies strong connectedness
in this case.)

Proof. For the Bernoulli probability measure p determined by
the vector (...) defined in the proo of the previous theorem, the
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compound source r(.)=r(. p, ) is Markovian by Theorem 1. Let us
prove that this Markov chain is irreducible. The Markov chain r is
stationary as both the input source p and the channel are stationary, so
it suffices to prove that the graph H which represents transients of the
Markov chain r, is weakly connected. The graph H can be constructed
easily using the graph G by the following method:

Put H-X G, where an edge ba or a-(x, s), b=(x’, s’)e X G
exists if and only if the edge (s,s’) indexed by x exists in G, i.e.,
r(s’, x)=s, Actually,

r((xs) (x’s’)) $(x)q,s> 0
if and only if q,)0 which is equivalent to r(s’, x)=s. (We can assume
(x)>0.)

For any state s and any letters x, x’, the vertices (x, s) and (x’, s)
are weakly connected as or any x", the edges (x, s)-(x", s) and (x’, s)
-.(x’, s’) exist, where s’=r(s, x"). The notation o weakly connected-
ness is (x, s) (x’, s).

Now let us prove that (x, s)(x, s) for every s, s., x, x.. The
states s and s are strongly connected in G, hence there exists a se-
quence of input letters x, xt, x and a sequence o indexed directed
edges

93 X4
81 Sia 8ia----8i4 8ira_

Then for any x a sequence o edges (x, s)-.(x, s), (x, s,)-.(x, s,),
., (x_, s_)-(x, s) exists, therefore putting x=x we get (x, s)
(x,s)(x,s), which implies that H is wekly connected and r is
ergodic.
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