77. Oscillation Theorems for Second Order Differential Equations with Retarded Argument

By Takaŝi Kusano*) and Hiroshi Onose**)
(Comm. by Kôsaku Yosida, M. J. A., June 11, 1974)

Introduction. In this paper we are concerned with the oscillatory behavior of solutions of the differential equation with retarded argument
(A)

$$
\left(r(t) x^{\prime}(t)\right)^{\prime}+\alpha(t) f(x(g(t)))=0
$$

where the following conditions are always assumed to hold:
(a) $r(t) \in C^{1}(0, \infty), r(t)>0$;
(b) $a(t) \in C(0, \infty), a(t) \geqq 0$;
(c) $g(t) \in C^{1}(0, \infty), g(t) \leqq t, g^{\prime}(t) \geqq 0, \lim _{t \rightarrow \infty} g(t)=\infty$;
(d) $f(y) \in C(-\infty, \infty) \cap C^{1}(-\infty, 0) \cap C^{1}(0, \infty), y f(y)>0, f^{\prime}(y) \geqq 0$ for $y \neq 0$.
We consider only those solutions of (A) which are defined and nontrivial for all sufficiently large t. Such a solution is called oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.

Our purpose here is to present criteria (sufficient conditions) for all solutions of (A) to be oscillatory not only for the case $\int^{\infty} \frac{d t}{r(t)}=\infty$ but also for the case $\int^{\infty} \frac{d t}{r(t)}<\infty$. Our theorems can be applied to produce oscillation criteria for the damped equation (B)

$$
x^{\prime \prime}(t)+p(t) x^{\prime}(t)+q(t) f(x(g(t)))=0
$$

1. We begin with the case $\int^{\infty} \frac{d t}{r(t)}=\infty$. In this case the following theorem holds.

Theorem 1. Assume there exist two positive functions $\rho(t)$ $\in C^{2}(0, \infty)$ and $\phi(y) \in C^{1}(0, \infty)$ with the following properties:

$$
\begin{aligned}
& \rho^{\prime}(t) \geqq 0, \quad\left(r(t) \rho^{\prime}(t)\right)^{\prime} \leqq 0, \quad \phi^{\prime}(y) \geqq 0, \\
& \int_{ \pm \delta}^{ \pm \infty} \frac{d y}{f(y) \phi(y)}<\infty \quad \text { for some } \delta>0, \\
& \int^{\infty} \frac{\rho(g(t)) a(t)}{\phi\left(R_{T}(g(t))\right)} d t=\infty \quad \text { for any } T>0,
\end{aligned}
$$

where $R_{T}(t)=\int_{T}^{t} \frac{d s}{r(s)}$. Then all solutions of (A) are oscillatory.

[^0]Proof. Suppose there exists a nonoscillatory solution $x(t)$ of (A). Without loss of generality we may assume that $x(g(t))>0$ for all sufficiently large t, say, $t \geqq T$. From (A) $\left(r(t) x^{\prime}(t)\right)^{\prime}=-\alpha(t) f(x(g(t))) \leqq 0$, which implies that $r(t) x^{\prime}(t)$ is nonincreasing. From the assumption $\int^{\infty} \frac{d t}{r(t)}=\infty$ it follows that $x^{\prime}(t) \geqq 0$, i.e., $x(t)$ is nondecreasing for $t \geqq T$. In fact, if $x^{\prime}\left(t^{*}\right)<0$ for some $t^{*} \geqq T$, then $r(t) x^{\prime}(t) \leqq r\left(t^{*}\right) x^{\prime}\left(t^{*}\right)$ for $t \geqq t^{*}$, and an integration of the last inequality divided by $r(t)$ gives

$$
x(t)-x\left(^{*}\right) \leqq r\left(t^{*}\right) x^{\prime}\left(t^{*}\right) \int_{t^{*}}^{t} \frac{d s}{r(s)}
$$

which yields a contradiction in the limit as $t \rightarrow \infty$. Let t_{1} be such that $g(t)>T$ for $t \geqq t_{1}$. It is easy to verify that there is a constant $A \geqq 1$ such that

$$
\begin{equation*}
x(g(t)) \leqq A R_{T}(g(t)) \quad \text { for } t \geqq t_{1} . \tag{1}
\end{equation*}
$$

Multiplying (A) by $\rho(g(t)) / f(x(g(t))) \phi\left(R_{T}(g(t))\right)$ and integrating on [t_{1}, t] we obtain

$$
\begin{align*}
& \frac{\rho(g(t)) r(t) x^{\prime}(t)}{f(x(g(t))) \phi\left(R_{T}(g(t))\right)}+\int_{t_{1}}^{t} \frac{\rho(g(s)) r(s) x^{\prime}(s)\left[f(x(g(s))) \phi\left(R_{T}(g(s))\right)\right]^{\prime}}{\left[f(x(g(s))) \phi\left(R_{T}(g(s))\right)\right]^{2}} d s \\
& \quad=C+\int_{t_{1}}^{t} \frac{r(s) x^{\prime}(s) \rho^{\prime}(g(s)) g^{\prime}(s)}{f(x(g(s))) \phi\left(R_{T}(g(s))\right)} d s-\int_{t_{1}}^{t} \frac{\rho(g(s)) a(s)}{\phi\left(R_{T}(g(s))\right)} d s, \tag{2}
\end{align*}
$$

where C is a constant.
Since x, f, g, ϕ, R_{T} are nondecreasing, the integral on the left hand side of (2) is nonnegative. Using the inequalities $r(t) x^{\prime}(t)$ $\leqq r(g(t)) x^{\prime}(g(t)), \quad\left(r(t) \rho^{\prime}(t)\right)^{\prime} \leqq 0$ and (1), and applying the well known Bonnet's theorem, the first integral on the right hand side of (2) is estimated as follows:

$$
\begin{aligned}
\int_{t_{1}}^{t} \frac{r(s) x^{\prime}(s) \rho^{\prime}(g(s)) g^{\prime}(s)}{f(x(g(s))) \phi\left(R_{T}(g(s))\right)} d s & \leqq \int_{t_{1}}^{t} \frac{r(g(s)) x^{\prime}(g(s)) \rho^{\prime}(g(s)) g^{\prime}(s)}{f(x(g(s))) \phi\left(R_{T}(g(s))\right)} d s \\
& \leqq r\left(g\left(t_{1}\right)\right) \rho^{\prime}\left(g\left(t_{1}\right)\right) \int_{t_{1}}^{t} \frac{x^{\prime}(g(s)) g^{\prime}(s)}{f(x(g(s))) \phi\left(R_{T}(g(s))\right)} d s \\
& \leqq A r\left(g\left(t_{1}\right)\right) \rho^{\prime}\left(g\left(t_{1}\right)\right) \int_{x\left(g\left(t_{1}\right)\right) / A}^{x\left(g\left(t_{1}\right)\right) / A} \frac{d y}{f(y) \phi(y)} .
\end{aligned}
$$

Thus the first integral on the right side of (2) remains bounded above as $t \rightarrow \infty$. Letting $t \rightarrow \infty$ in (2) we conclude that

$$
\lim _{t \rightarrow \infty} \frac{\rho(g(t)) r(t) x^{\prime}(t)}{f(x(g(t))) \phi\left(R_{r}(g(t))\right)}=-\infty,
$$

which contradicts the fact that $x^{\prime}(t) \geqq 0$ for $t \geqq t_{1}$. This completes the proof of the theorem.

Remark. Theorem 1 extends a recent result of the authors [3, Theorem 1] for the special case of equation (A) with $r(t) \equiv 1$.

Corollary 1.1 (Bykov, Bykova and Šercov [1]). Assume that there is $\varepsilon>0$ such that

$$
\int^{\infty}\left[R_{T}(g(t))\right]^{1-s} a(t) d t=\infty \quad \text { for any } T>0
$$

Then all solutions of the equation

$$
\left(r(t) x^{\prime}(t)\right)^{\prime}+a(t) x(g(t))=0
$$

are oscillatory.
Proof. Apply Theorem 1 to the particular case where $f(y)=y$, $\rho(t)=R_{T}(t), \phi(y)=y^{\text {}}$.

Corollary 1.2 (Bykov, Bykova and Šercov [1]). Assume that

$$
\int^{\infty} R_{T}(g(t)) a(t) d t=\infty \quad \text { for any } T>0
$$

Then all solutions of the equation

$$
\left(r(t) x^{\prime}(t)\right)^{\prime}+a(t)|x(g(t))|^{\alpha} \operatorname{sgn} x(g(t))=0, \quad \alpha>1,
$$

are oscillatory.
Proof. Apply Theorem 1 to the particular case where $f(y)$ $=|y|^{\alpha} \operatorname{sgn} y, \alpha>1, \rho(t)=R_{T}(t), \phi(y) \equiv 1$.
2. The object of this section is to prove an oscillation theorem for (A) which is particularly useful to the case $\int^{\infty} \frac{d t}{r(t)}<\infty$.

Theorem 2. Assume there exists a positive function $\sigma(t) \in C^{2}(0, \infty)$ with the properties:

$$
\begin{aligned}
& \sigma^{\prime}(t) \leqq 0, \quad\left(r(t) \sigma^{\prime}(t)\right)^{\prime} \geqq 0, \\
& \int^{\infty} \frac{d t}{\sigma(t) r(t)}=\infty, \\
& \int^{\infty} \sigma(t) a(t) d t=\infty .
\end{aligned}
$$

Let $\int_{ \pm 0}^{ \pm \delta} \frac{d y}{f(y)}<\infty$ for some $\delta>0$. Then all solutions of (A) are oscillatory.

Proof. This theorem was motivated by Kamenev [2]. Let $x(t)$ be a nonoscillatory solution such that $x(g(t))>0$ for $t \geqq t_{1}$. It follows that $r(t) x^{\prime}(t)$ is nonincreasing for $t \geqq t_{1}$ and so $x^{\prime}(t)$ is eventually of constant sign. We multiply (A) by $\sigma(t) / f(x(g(t)))$ and integrate from t_{1} to t to obtain

$$
\begin{align*}
& \frac{\sigma(t) r(t) x^{\prime}(t)}{f(x(g(t)))}+\int_{t_{1}}^{t} \frac{\sigma(s) r(s) x^{\prime}(s)[f(x(g(s)))]^{\prime}}{[f(x(g(s)))]^{2}} d s \\
& \quad=C+\int_{t_{1}}^{t} \frac{r(s) x^{\prime}(s) \sigma^{\prime}(s)}{f(x(g(s)))} d s-\int_{t_{1}}^{t} \sigma(s) x(s) d s \tag{3}
\end{align*}
$$

where C is a constant. It is clear that the integral on the left side of (3) is nonnegative.

Let $x^{\prime}(t) \geqq 0$. Then, the first integral on the right side of (3) is nonpositive, and therefore, letting $t \rightarrow \infty$ in (3), we get a contradiction.

Let $x^{\prime}(t) \leqq 0$. Then, as in the proof of Theorem 1 , we can show that the first integral on the right side of (3) is bounded above. We
can choose $t_{2} \geqq t_{1}$ so that the right hand side of (3) is less than -1 , i.e.,

$$
\begin{equation*}
1+\int_{t_{2}}^{t} \frac{\sigma(s) r(s) x^{\prime}(s)[f(x(g(s)))]^{\prime}}{[f(x(g(s)))]^{2}} d s \leqq \frac{\sigma(t) r(t)\left(-x^{\prime}(t)\right)}{f(x(g(t)))} \tag{4}
\end{equation*}
$$

for $t \geqq t_{2}$. Multiplying both sides of (4) by

$$
-\frac{[f(x(g(t)))]^{\prime}}{f(x(g(t)))}\left\{1+\int_{t_{2}}^{t} \frac{\sigma(s) r(s) x^{\prime}(s)[f(x(g(s)))]^{\prime}}{[f(x(g(s)))]^{2}} d s\right\}^{-1} \geqq 0
$$

and integrating from t_{2} to t, we have

$$
\begin{equation*}
\log \frac{f\left(x\left(g\left(t_{2}\right)\right)\right)}{f(x(g(t)))} \leqq \log \left\{1+\int_{t_{2}}^{t} \frac{\sigma(s) r(s) x^{\prime}(s)[f(x(g(s)))]^{\prime}}{[f(x(g(s)))]^{2}} d s\right\} . \tag{5}
\end{equation*}
$$

From (4) and (5) we get

$$
f\left(x\left(g\left(t_{2}\right)\right)\right) \leqq-\sigma(t) r(t) x^{\prime}(t)
$$

or

$$
x(t)-x\left(t_{2}\right) \leqq-f\left(x\left(g\left(t_{2}\right)\right)\right) \int_{t_{2}}^{t} \frac{d s}{\sigma(s) r(s)}
$$

which gives $\lim _{t \rightarrow \infty} x(t)=-\infty$, a contradiction. This proves the theorem.
Corollary 2.1. Consider the equation
(6) $\quad\left(r(t) x^{\prime}(t)\right)^{\prime}+a(t)|x(g(t))|^{\alpha} \operatorname{sgn} x(g(t))=0, \quad 0<\alpha<1$.
Assume that

$$
\begin{gathered}
\int^{\infty} \frac{d t}{r(t)}<\infty, \\
\int^{\infty} S(t) a(t) d t=\infty,
\end{gathered}
$$

where $S(t)=\int_{t}^{\infty} \frac{d s}{r(s)}$. Then all solutions of (6) are oscillatory.
Proof. Apply Theorem 2 to the particular case where $f(y)$ $=|y|^{\alpha} \operatorname{sgn} y, 0<\alpha<1, \sigma(t)=\int_{t}^{\infty} \frac{d s}{r(s)}$.
3. Let us consider the damped equation (B). Assume that $p(t)$, $q(t) \in C(0, \infty), q(t) \geqq 0$ and $g(t)$ satisfies condition (c).

Theorem 3. Suppose that $t p(t) \leqq 1$ and $(t p(t))^{\prime} \geqq 0$ for sufficiently large t and let

$$
\begin{aligned}
& \int_{ \pm \delta}^{ \pm \infty} \frac{d y}{f(y)}<\infty \quad \text { for some } \delta>0 \\
& \int^{\infty} g(t) q(t) \exp \left(\int_{g(t)}^{t} p(s) d s\right) d t=\infty
\end{aligned}
$$

Then all solutions of (B) are oscillatory.
Proof. Equation (B) can be transformed into an equation of the form (A) where $r(s)=\exp \left(\int_{T}^{t} p(s) d s\right)$ and $a(t)=r(t) q(t)$. If we choose $\rho(t)=t / r(t)$ and $\phi(y) \equiv 1$, then the assumptions of the theorem guarantee that those of Theorem 1 are all satisfied, and the assertion follows from Theorem 1.

Theorem 4. Assume that $t p(t) \geqq 1$ and $(t p(t))^{\prime} \leqq 0$ for sufficiently large t and let

$$
\begin{gathered}
\int_{ \pm 0}^{ \pm} \frac{d y}{f(y)}<\infty \quad \text { for some } \delta>0 \\
\int^{\infty} t q(t) d t=\infty
\end{gathered}
$$

Then all solutions of (B) are oscillatory.
Proof. Choose $\sigma(t)=t / r(t)$ and apply Theorem 2 to equation (A) into which equation (B) is transformed.

Acknowledgment. The authors thank our colleague Manabu Naito for his helpful suggestions.

References

[1] Ya. V. Bykov, L. Ya. Bykova, and E. I. Šercov: Sufficient conditions for oscillation of solutions of nonlinear differential equations with deviating argument. Differencial'nye Uravnenija, 9, 1555-1560 (1973) (in Russian).
[2] I. V. Kamenev: On the oscillation of solutions of a nonlinear second order equation with coefficient of variable sign. Differencial'nye Uravnenija, 6, 1718-1721 (1970) (in Russian).
[3] T. Kusano and H. Onose: Oscillations of functional differential equations with retarded argument. J. Differential Equations, 15, 269-277 (1974).

[^0]: *) Department of Mathematics, Hiroshima University.
 **) Department of Mathematics, Ibaraki University.

