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Oscillation Theorems for Second Order Differential
Equations with Retarded Argument

By Takai KUSAN0* and Hiroshi ONOSE**

(Comm. by K6saku YOSIDA, M. J. _., June II, 1974)

Introduction. In this paper we are concerned with the oscillatory
behavior of solutions of the differential equation with retarded argu-
ment
(A) (r(t)x’(t))’ + a(t)f(x(g(t))) O,
where the following conditions are always assumed to hold:

(a) r(t) e C(O, ), r(t) > O
(b) a(t) e C(O, c), a(t)>__0;
(c) g(t) e C(O, ), g(t)t, g’(t)O, lim g(t)=

t

(d) f(y) e C(--,) C( , O) C’(O,), yf(y) > O, f’(y) 0 for
y0.

We consider only those solutions of (A) which are defined and nontrivial
for all sufficiently large t. Such a solution is called oscillatory if it
has arbitrarily large zeros; otherwise, it is called nonoscillatory.

Our purpose here is to present criteria (sufficient conditions) for

all solutions of (A) to be oscillatory no only for the ease
(t)

dt ,<. Our theorems can be appliedbut also for the ease (t)
roduee oscillation criteria for the damed equation
(B "(t) + (t)’(t) + q(t)f(((t))) O.

1. We begin wih the ease
r(t) -"

In this ease he follow-

ing theorem holds.
Theorem 1. Ame there ezit two oitive

e C(O, ) and (y) C(0, ) with the following properties:
p’(t)O, (r(t)p’(t))’ gO, ’(y)0,

dy for some O,
f(y)(y)
p(g(t))a(t) dt for any T> O,
(Rr(g(t)))

 o ution o ci   tor .
r(s)
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Proof. Suppose there exists a nonoscillatory solution x(t) of (A).
Without loss of generality we may assume that x(g(t))0 for all suffi-
ciently large t, say, t >= T. From (A) (r(t)x’(t))’-- --a(t)f(x(g(t))) <= O,
which implies that r(t)x’(t) is nonincreasing. From the assumption

dt
-c it follows that x’(t)>0 i.e., x(t)is nondecreasing or t>T.

r(t)
In act, if x’(t*)O for some t*T, then r(t)x’(t)<__r(t*)x’(t*) for t>__t*,
and an integration of the last inequality divided by r(t) gives

x(t)-x(*)<r(t*)x’(t*) ds

* r(s)
which yields a contradiction ia the limit as t-c. Let t be such that
g(t) T or t_>_ t. It is easy to verify that there is a constant A >= 1
such that
( 1 x(g(t)) <= ARr(g(t)) or t >= tl.

Multiplying (A) by p(g(t))/f(x(g(t)))(Rr(g(t))) and integrating on
[t, t] we obtain

p(g(t))r(t)x’(t) + [t p(g(s))r(s)x’(s)[f(x(g(s)))(Rr(g(s)))]’ ds
f(x(g(t)))(Rr(g(t))) Jr, [f(x(g(s)))(Rr(g(s)))]

(2)

tl f(x(g(s)))(RT(g(s))) t, (RT(g(s)))
where C is a constant.

Since x,f,g,,Rr are nondecreasing, the integral oa the left
hand side of (2) is nonnegative. Using the inequalities r(t)x’(t)
<=r(g(t))x’(g(t)), (r(t)p’(t))’<= 0 and (1), and applying the well known
Bonnet’s theorem, the first integral on the right hand side of (2) is
estimated as follows"

’ r(s)x’(s)p’(g(s))g’(s) ds<_] r(g(s))x’(g(s))o’(g(s))g’(s) ds
t, f(x(g(s)))(Rr(g(s))) , f(x(g(s)))(Rr(g(s)))

<_ r(g(tl))p’(g(tl)) x’(g(s))g’(s) ds
Jt, f(x(g(s)))(Rr(g(s)))

<_ Ar(g(t))p’(g(t))
x(q(t))/ f(y)(y)

Thus the first integral o the right side of (2) remains bounded above
as t-c. Letting t-c in (2) we conclude that

lira p(g(t))r(t)x’(t)
t- f(x(g(t)))(Rr(g(t)))

which contradicts the act that x’(t)>=O or t>=t. This completes the
proo of the theorem.

Remark. Theorem 1 extends a recent result o the authors [3,
Theorem 1] or the special case o equatio (A) with r(t)--1.

Corollary 1.1 (Bykov, Bykova and Sercov [1]). Assume that there
is e 0 such that
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c for any[Rr(g(t))]l-’a(t)dt TO.

Then all solutions of the equation
(r(t)x’(t))’ + a(t)x(g(t))-- 0

are oscillatory.
Proof. Apply Theorem 1 to the particular case where f(y)--y,

p(t) Rr(t), (y)-- y’.

Corollary 1.2 (Bykov, Bykova and Sercov [1]). Assume that; c for anyRr(g(t))a(t)dt= TO.

Then all solutions of the equation
(r(t)x’(t))’ +a(t) x(g(t))]" sgn x(g(t))=O, > 1,

are oscillatory.
Proof. Apply Theorem 1 to he particular case where f(y)

]y ]" sgn y, a) 1, p(t) R(t), #(y) 1.
2. The object of this section is to prove an oscillation theorem

dt <.for (A) which is particularly useful to the case r(t)
Theorem 2. Assume there exists a positive [unction a(t) e C(O, )

with the properties"
a’(t)O, (r(t)a’(t))’O,

e(t)(t)

(t)a(t)gt=.
or ome >0. The all oltio o (A) are oeil-Let <

o f(y)
latory.

Proof. This theorem was motivated by Kamenev [2]. Let x(t)
be a nonoscillatory solution such that x(g(t))O for tt. It follows
that r(t)x’(t) is nonincreasing for tt and so x’(t) is eventually o con-
stant sign. We multiply (A) by a(t)/f(x(g(t))) and integrate from
t to t to obtain

a(t)r(t)x’(t) [ a(s)r(s)x’(s)[f(x(g(s)))]’ ds
f(x(g(t))) +

,a [f(x(g(s)))]
(3)

f f:l a(s)a(s)ds,=C+ r(s)x’(s)q’(s) ds-
t f(x(g(s)))

where C is a constant. It is clear that the integral on the left side of
(3) is nonnegative.

Let x’(t)O. Then, the first integral on the right side o (3) is
nonpositive, and therefore, lettingt in (3), we get a contradiction.

Let x’(t)gO. Then, as in the proo o Theorem 1, we can show
that the first integral on the right side of (3)is bounded above. We
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can choose t2>=t so that the right hand side of (3) is less than -1, i.e.,

( 4 ) 1 + a(s)r(s)x’(s)[f(x(g(s)))]’ ds<_ a(t)r(t)(-- x’(t))
t [f(x(g(s)))] f(x(g(t)))

for t_>_ t. Multiplying both sides of (4) by
[f(x(g(t)))]’ {1+ a(s)r(s)x’(s)[f(x(g(s)))]’ ds}->_Of(x(g(t))) t [f(x(g(s)))]

and integrating rom t to t, we have

(5) log f(x(g(t))) _<log {1+ a(s)r(s)x’(s)[f(x(g(s)))]’ ds}.y(x(g(t))) t [y(x(g(s)))]
From (4) and (5) we get

f(x(g(t))) <= --a(t)r(t)x’(t)
or

dsx(t) x(t) < f(x(g(t2)))
t (y(8)r(8)

which gives lim x(t)----c, a contradiction. This proves the theorem.

Corollary 2.1. Consider the equation

6 ) (r(t)x’(t))’ +a(t)Ix(g(t))t sgn x(g(t))--O, 0<a<l.
Assume that

dt
r(t)

<’
S(t)a(t)dt=

Then all solutions of (6) are oscillatory.

Theorem
large t and let

dy < c for some $>O,
f(y)

I g(t)q(t) exp (;(t)p(s)ds)dt-- c.
Then all solutions of (B) are oscillatory.

Proof. Equation (B) can be transformed into an equation of the

form (A)where r(s)=exp([:p(s)ds)and a(t)--r(t)q(t). If we choose

p(t)= fir(t) and (y)--1, then the assumptions of the theorem guarantee
that those of Theorem 1 are all satisfied, and the assertion follows
from Theorem 1.

where S(t)=f ds.
r(s)

ProoL Apply Theorem 2 to the particular case where f(y)

=lylsgny, O<a<l, z(t)- ds.
r(s)

3. Let us consider the damped equation (B). Assume that p(t),
q(t) e C(O, c), q(t)>=O and g(t) satisfies condition (c).

Suppose that tp(t) <= 1 and (tp(t))’ >= 0 for sufficiently
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Theorem 4.
large t and let

Assume that tp(t) >= 1 and (tp(t))’ <= 0 for suliiciently

d___y__y < c for some >0,
so f(y)

tq(t)dt= c.

Then all solutions of (B) are oscillatory.
Proof. Choose a(t)-t/r(t) and apply Theorem 2 to equation (A)

into which equatio (B) is transformed.
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