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188. Singularities of the Riemann Functions of Hyperbolic
Mixed Problems in a Quarter.Space

By Seiichiro WAKABAYASHI
Faculty of Science, Tokyo University of Education

(Comm. by K6saku Y0SIDA, M. J..., Dec. 12, 1974)

Introduction. Matsumura [4] studied singularities of Riemann
functions of hyperbolic mixed problems in a quater-space and
determined the location of reflected waves by means of "localization
theorem". In general Riemann functions also have singularities cor-
responding to lateral waves and boundary waves (see, Duff [3], Deakin
[2]). Lateral waves arise from the presence of branch points in
reflection coefficients and boundary waves are caused by real zeros of
Lopatinski determinant. In this note we give a localization theorem
which determines explicitly the location of lateral waves. The locali-
zation theorem of the fundamental solutions for the hyperbolic
operators with constant coefficients in the whole space was established
by Atiyah, Bott and Grding [1].

The author would like to express his hearty thanks to Professor
M. Matsumura for many valuable suggestions, by whom he was in-
spired the existence of the problem.

1. Assumptions and Riemann functions. Let Rn denote the n-
dimensional Euclidean space and n its complex dual space and write
x’=(x, ..., x_), x"=(x2, ..., x) for the coordinate x-(x, ..., x,) in
R and ’--($,...,$_), "=(2,...,) for the dual coordinate $

--($, ., ). The variable x will play the role of "time", the variables
x2, ..., x will play the role of "space". We shall also denote by R
the half-space {x-(x’, x,) e R x0}. For differentiation we will use
the symbol D--i-(3/3x, ., /3x).

Let P-P($) be a hyperbolic polynomial of order m of n variables
with respect to 9-----(1, 0, ..., 0) e Re in the sense of Grding. We

consider the mixed initial-boundary value problem for the hyperbolic
operator P(D) in a quater-space
( 1 ) P(D)u(x)= f(x), x e R, xl
( 2 ) (Du)(O, x") O, 0

_
k

_
m-- 1, x O,

( 3 ) Bj(D)u(x) Ix__0= 0, l_]_l,
Here the B(D) are boundary operators with order m. The number
of boundary conditions will be determined later on. We assume that
the hyperplane Xn--O is non-characteristic for P(D) and B(D).

Let Re A be the real hypersurface { e Re p0()-0}, where p0()
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denotes the principal part of P(). Further we denote by F--F(A,
(Re n) the component oi Re n\Re A which contains O. When
U e Re n---is’--iFo with s large enough, we can denote the roots
P(’, 2)--0 with respect to 2 by 2(U),..., 2(U), which are enumerated
so that

( 4 )
Im (’)> 0, l<_k<_l,
Im 2(U) 0, + 1 _< k_< m.

Here F0 denotes the set {/e Re n-; (/, 0) e F}. This number deter-
mines the number of boundary conditions (see [4]). Let/(’), ...,/(’)
be the roots o p0(,, Z)-0. Since
( 5 ) t-P(tU, tl) >p0(,,/) as t--c,
it follows that, with suitable labelling,
( 6 ) t-:(t’) >/(’), l<_k<_m, as t-c.
We now define Lopatinski determinant :or the system {P, B} by
(7) R(’)-- det (B(’, 2(’))/I-[< ((’)--(’))
and for the system {po, B.} by
( 8 R(U)- det (B(’, p(U)))/:< (/(U)-/(U)).
Here B(:) denotes the principal part o: B(#). We state the assump-
tions that we impose on {P, B}"
(A. 1) P()--p:()... p(#),
where the p(#) are distinct strictly hyperbolic polynomials with
respect to 0 and irreducible over the complex number field C.
(A. 2) For each p.(#) and non-zero $’e Ren-: the real roots
p.(U, Z)--0 are at most double.
(A. 3) I: p.(U, g)=0 has real double roots for fixed U(4:0) e Re "-:,
the number o its real double roots is 1 and p(#,/)-0 has no real
double roots :or i4=].
(A. 4) R(’)4=0 when ’ e Re "-:--isO’--iFo with s large enough.
Here p.() denotes the principal part o: p(#).

Now we can construct the Riemann unction G(x, y) or {P,B}
(see [4]). Write

( 9 )
G(x, y) E(x- y) F(x, y),

x e R, Xl>0, y--(0, Y2, "’’, Yn) e Rn+,
where E(x) is the-fundamental solution defined by

E(x) =(2)-" f exp [ix.(+i)]P(+i)-d,
(10) leE

e --sO--F.
Then the reflected Riemann unction F(x, y) is written in the form

F(x, y) (2) f ,= R(x,, ’+ igR(’+ i’)-d

(11) exp [i(x’--y’). (U + i/)]
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in the distribution sense with respect to (x, y)e R+ R. Here the
R(x, ’)are defined by replacing in R(’) the ]-th row vector of the
determinant with the vector (exp [i](’)Xn],’", exp [i2(’)x]).

2. Localization theorem. According to [1], we introduce he
notion of localization of polynomials.

Definition. Let P() be a polynomial of degree m_>0 and develop
tP(t-l/) in ascending power o t
(12) tP(t-l+) tP() / O(t
where P() is the first coefficient that does not vanish identically in
The number p=m(P) is called the multiplicity of relative to P and
the polynomial --.P() the localization of P at

Let D(P+)(’) and D(P)(’) denote the discriminants of P+(’,
=P(0, 1)l-[ __1(2 2(’)) 0 in 2 and po+ (,,/2) P(0, 1) 1-I = (z-/(’))
0 in/, respectively. We assume that o-(o, ’, o) e Re satisfies

the following conditions (i) o e Re A. (ii) D po(/)(0) =/=0. (iii) There
p(o, )-o.exists b, l<_b<_l, such that /(g) is a real double root o

(iv) 0n :/:Z(). (V) R(g) :/: 0. Moreover we choose number k such
that (vi) Z(g) is real and k:/: b, 1<_ k_< 1. Then there exists unique
number r such that
(13) p(,,/(’))- 0 or ’--o--it-8:
Put with small positive

() (2i)-
(4) z{(0,, z)l/Z(o,, z)-p/Z(o; z) p(0,z)}

{Pr(, z)}-2dz,
--Pr(,Z). More-where p(’, z) denotes the principal part o p(’, z)

over put

(15)

(16)

Here (o) denotes the determinant z/(B(0,/r())) and (0) its (], k)-
cofactor, and A (o) is defined by replacing in A() the b-th column
vector with t(3B/3(’o, 0()), "’, 3B/(’o, p0())) and A(0)’ denotes
its (], k)-cofactor, p0() and fl() will be given by (25) and (34) in
Section 3, respectively. Then we have ollowing
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Localization theorem. Assume that the conditions (A. 1)-(A. 4)
are satisfied and that o and k satisfy the above conditions (i)-(vi). Put
79 --mo(P). Then

(17)
t-// exp [--it{(x’--y’).’o+ x/2(’o)--y,o}]F(x, y)

--t Fo,(x, y) Fo,(x, y) as t-c
in the distribution sense with respect to (x, y)e R+ 1+ and
(18) supp(,) Feo,(x, y)csign su.pp(,) F(x, y).
Moreover

(19) supp(’v) F’C{(x, y) e R.. R, y=(0, Y2, "’’, Y),
[x’-- y’ q- x grad,/()]. ’--y>_ O, e Fo,b},

where Fo,--F(Ao,, ) and Re Ao,-{5 e Re n; po(). [grad, p0().5,]
=0}.

Remark 1. Matsumura [4] showed that
(20) supp(,) F0,c sing supp(,) F.
This result determines the location of reflected waves. Our result deter-
mines the location of lateral waves.

Remark 2. The condition (A. 3) can be removable.
3. Outline of proof. If t is chosen sufficiently large, then we

can write 2(t+5’+ir/) in the form

(21)
for fixed 5 + it/e Re --isO--iF,

where Im /p(t+ 5’ + i’) 0 and a(.) and p(. are analytic or
<_ ct. In fact, a(t+’+ir/) is a root of the equation
(22) T--b(.)R+2-(b(.)--b(.))--O,
where

(23) bx(to+’+ i’)=(2ri)- f tz.p/z( tz).p(., tz)-dz,
J

(24) b.(t’o+ ’+ i’) (2i)- [ tz p/z(. tz) p(. tz)-dz.

Similarly we have
" o+ + i’) + a/p(t’o+ +i’).(25) /0(t0+ ’ + i’) 0 t ’Put

(26) F’(x’ y; t)--t-//z exp [--it{(x’--y’).’o.+X/()--yo}]
F(x, y)- ta/ZFo,(x, y).

The integrals over I+il>-ct/ on the right hand side of (26) tend to
zero in the distribution sense as t-c, where N is chosen large enough
and r; is fixed so that e --s--l" and (r/, 0)e -s3-F. The term cor-
responding to the integrals over I+ilg czt/ in (26) is written in the
form

Fo,(x, y; t)

j,k=l

det (Bq(., ,(.)))- exp [i(x’--y’).(’+ ir/)]
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exp [ nt{(t0/ /i’)/t--/(’o)}]

(27) X I.[: exp[--iyn(n +i)]B;(t0++i)

x t’-P(t,++iO d d’--(2)-t/A()B}(,)A()-
When I+ilc2t, we have
(28) cof; (B(., (.))). det (B(., (.)))- ;(.) + ;(.)(.),
where ;(.) and ;(.) are analytic for ’+i’c2t. If the condition
(A. 3) is removed, (28) does not hold in generM. However, by obvious
modifications we can prove our theorem. For l+ilc2t we have
(29) t-p(t+’ +i’)=grad,, p().(’ +i’)+ fl()+O(t-l+2/),

(30)
t-B(to+ + iO/ (t’-P(to+ + i)}

:B -1(o). Po(+ i) + o(t- +/),
A - +lm),(31) tA()=A(o) (o) +0(t-(o) (o)(o) +(32) t+A(.) A’(o)A(o)’’-+ ’’’ ’- O(t-+m),

"Xt((to+ + i’) / t-())
ff +2/N)=ix(grad, Z(). (’ + i’) + (o)) + 0(t-

(33)

where

fl() (2ui) -1 | 1 / 2. z(z--2())
J

{E/z(’o, z).(’o, z)-(’o, z)./z(, z)}{(, z)}-dz.
From (29)-(33) it follows that
(35) Fo,(x, y, t): >Fo,(x, y) as t.
Moreover it follows rom the conditions (A. 1) and (A. 2) that
grad, p0() is a eal vector and that
(36) grad, p0(g). O’0,
i.e. grad, p().U is a hyperbolic polynomial with respect to 0. This
completes the proof.

The detailed proo and some examples will be given in a forth-
coming paper.
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