23. The Fundamental Solution for a Parabolic Pseudo. Differential Operator and Parametrices for Degenerate Operators

By Chisato Tsutsumi
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, M. J. A., Feb. 12, 1975)

Introduction. In the present paper we shall construct the fundamental solution $E(t, s)$ for a parabolic pseudo-differential equation

$$
\left\{\begin{array}{l}
L u=\frac{\partial u}{\partial t}+p\left(t ; x, D_{x}\right) u=0 \quad \text { in }(0, \infty) \times R^{n} \tag{0.1}\\
\left.u\right|_{t=0}=u_{0}
\end{array}\right.
$$

where $p\left(t ; x, D_{x}\right)$ is a pseudo-differential operator of class $\mathcal{E}_{t}^{0}\left(S_{\lambda, \rho, \delta}^{m}\right)$ $(0 \leqslant \rho \leqslant 1,-\infty<\delta<1, \delta<\rho)$ which satisfies the following condition:

There exist positive constants C_{0} and R such that
(0.2) $\operatorname{Re} p(t ; x, \xi) \geqslant C_{0} \lambda(x, \xi)^{m} \quad$ for $0 \leqslant t<\infty$ and $|x|+|\xi| \geqslant R$,
where $\lambda=\lambda(x, \xi)$ is a basic weight function defined in $\S 1$. We note that $\lambda(x, \xi)$ varies even in x and may increase in polynomial order, and that it is important to take $\delta<0$ in $\S 4$.

The fundamental solution $E(t, s)$ will be constructed as a pseudodifferential operator of class $S_{\lambda, \rho, \delta}^{0}$ with parameter t and s. The method of construction of $E(t, s)$ is similar to that given in Tsutsumi [10]. Then the solution of the Cauchy problem (0.1) is given by $u(t)$ $=E(t, 0) u_{0}$.

In §3 we show that if $P(t)$ is a positive operator, then $\exp \left\{c\left(t-s_{0}\right) E\left(t, s_{0}\right)\right\}$ are bounded in $S_{\lambda, \rho, \delta}^{-N}$ for $t \geqslant t_{0}>s_{0} \geqslant 0$, where c is a positive constant and N is any number.

As an application of the above theorems, in $\S 4$ we construct the fundamental solution $E_{0}(t)$ for a degenerate parabolic operator

$$
\begin{equation*}
L_{0}=\frac{\partial}{\partial t}+D_{x}^{2 l}+x^{2 k} D_{y}^{2 m}=\frac{\partial}{\partial t}+P_{0} \tag{0.3}
\end{equation*}
$$

and apply $E_{0}(t)$ to construct the parametrix for P_{0} near $x=0$ in some class of pseudo-differential operator. We note that in case $l=k=m$ $=1$ the precise symbol of the fundamental solution $E_{0}(t)$ is found in Hoel [4] and that the operator P_{0} has been studied by Beals [1], Hörmander [3], Grushin [2], Kumano-go and Taniguchi [6] and Sjöstrand [9].
§ 1. Notations and basic calculus of pseudo-differential operators of class $S_{\lambda, \rho, \delta^{*}}^{m}$. We say that a C^{∞}-function $\lambda(x, \xi)$ in $R_{x}^{n} \times R_{\xi}^{n}$ is a basic weight function when $\lambda(x, \xi)$ satisfies conditions (cf. [6]):
(i) $\quad A^{-1}(1+|x|+|\xi|)^{a} \leqslant \lambda(x, \xi) \leqslant A\left(1+|x|^{\tau_{0}}+|\xi|\right) \quad\left(a \geqslant 0, \tau_{0} \geqslant 0, A>0\right)$.
(ii) $\left|\lambda_{(\beta)}^{(\alpha)}(x, \xi)\right| \leq A_{\alpha, \beta} \lambda(x, \xi)^{1-|\alpha|+\delta|\beta|}$

$$
\left(0 \leqslant \rho \leqslant 1,-\infty<\delta<1, \delta<\rho, A_{\alpha, \beta}>0\right) \quad \text { for any } \alpha, \beta .
$$

(iii) $\lambda(x+y, \xi) \leqslant A_{1}(1+|y|)^{\tau_{1}} \lambda(x, \xi) \quad\left(\tau_{1} \geqslant 0, A_{1}>0\right)$,
where

$$
\begin{aligned}
& \lambda_{(\beta)}^{(\alpha)}(x, \xi)=\left(\partial / \partial \xi_{1}\right)^{\alpha_{1}} \cdots\left(\partial / \partial \xi_{n}\right)^{\alpha_{n}}\left(-i \partial / \partial x_{1}\right)^{\beta_{1}} \cdots\left(-i \partial / \partial x_{n}\right)^{\beta_{n}} \lambda(x, \xi), \\
&|\alpha|=\alpha_{1}+\cdots+\alpha_{n},|\beta|=\beta_{1}+\cdots+\beta_{n} \\
& \quad \text { for any multi index } \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{n}\right) .
\end{aligned}
$$

We denote by $S_{2, \rho, \delta}^{m}(-\infty<m<\infty, 0 \leqslant \rho \leqslant 1,-\infty<\delta<1, \delta<\rho)$ the set of all C^{∞}-symbols $p(x, \xi)$ defined in $R_{x}^{n} \times R_{\xi}^{n}$ which satisfies for any α, β

$$
\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \leqslant C_{\alpha, \beta} \lambda(x, \xi)^{m-\rho|\alpha|+\delta|\beta|}
$$

for some constant $C_{\alpha, \beta}$. For a symbol $p(x, \xi) \in S_{\lambda,,, \delta}^{m}$ we define a pseudodifferential operator by

$$
P u(x)=p\left(x, D_{x}\right) u(x)=\int e^{i x \cdot \xi} p(x, \xi) \hat{u}(\xi) d \xi,
$$

where $d \xi=(2 \pi)^{-n} d \xi$ and $\hat{u}(\xi)$ denote the Fourier transform of $u(x)$ in \mathcal{S} defined by

$$
\hat{u}(\xi)=\int e^{-i x \cdot \xi} u(x) d x
$$

For $p(x, \xi) \in S_{\lambda, \rho, \delta}^{m}$ we define semi-norms $|p|_{i}^{(m)}, l=0,1, \cdots$ by

$$
|p|_{i}^{(m)}=\operatorname{Max}_{|\alpha|+|\beta| \leqslant \downarrow}\left\{\sup _{(x, \xi)}\left|p_{(\beta)}^{(\alpha)}(x, \xi)\right| \lambda(x, \xi)^{-m+\rho|\alpha|-\delta|\beta|}\right\} .
$$

Then $S_{\lambda, \rho, \delta}^{m}$ makes a Fréchet space. Set $S_{\lambda}^{-\infty}=\bigcap_{-\infty<m<-\infty} S_{\lambda, \rho, \delta}^{m}$.
Theorem 1.1. Let $P_{j}=p_{j}\left(x, D_{x}\right) \in S_{\lambda, e, c}^{m j}(j=1,2, \cdots, \nu)$. Then P $=P_{1} P_{2} \ldots P_{\nu}$ belongs to $S_{\lambda, \rho, \delta,}^{m}$, where $m=\sum_{j=1}^{\nu} m_{j}$. Moreover for any positive integer l, there exist C_{1} and \tilde{l} such that

$$
|\sigma(P)|_{i}^{(m)} \leqslant C_{1}^{\nu} \prod_{j=1}^{\nu}\left|p_{j}\right|_{\stackrel{l}{\left(m_{j}\right)}}
$$

where \tilde{l} depends on $M=\sum_{j=1}^{\nu}\left|m_{j}\right|<\infty$ and l but is independent of ν.
From the above theorem the following theorem is proved by the same method in Kumano-go [5].

Theorem 1.2. Let $P \in S_{\lambda, \rho, \delta}^{0}$. Then there exists l such that $\|P u\| \leqslant C_{2}|p|_{l}^{(0)}\|u\| \quad$ for any $u \in L^{2}$,
where $\|\cdot\|$ is the $L^{2}\left(R^{n}\right)$ norm.
For any $s>0$ we define $H_{\lambda, s}$ by $H_{\lambda, s}=\left\{u \in L^{2} ; \lambda^{s}\left(x, D_{x}\right) u \in L^{2}\right\}$ with the norm $\|u\|_{\lambda, s}^{2}=\left\{\left\|\lambda^{s}\left(x, D_{x}\right) u\right\|^{2}+\|u\|^{2}\right\}$.

If the basic weight function $\lambda(x, \xi)$ satisfies (i) for $a>0$, then we get by Theorem 1.2.

Proposition. Let $0 \leqslant s_{1}<s_{2}$. Then for any $\varepsilon>0$ there is a positive constant $C_{\text {。 }}$ such that

$$
\|u\|_{2, s_{1}} \leqslant \varepsilon\|u\|_{2, s_{2}}+C_{\varepsilon}\|u\| .
$$

We get the expansion formula as follows.
Theorem 1.3 (cf. [6]). Let $P_{j} \in S_{\lambda, \rho, \delta}^{m j}(j=1,2) . \quad$ Then we have the expansion for any N

$$
\sigma\left(P_{1} P_{2}\right)(x, \xi)=\sum_{|\alpha|<N} \frac{1}{\alpha!} p_{1}^{(\alpha)}(x, \xi) p_{2(\alpha)}(x, \xi)+r_{N}(x, \xi)
$$

where $r_{N}(x, \xi) \in S_{\lambda, \rho, \delta}^{m_{1}+m_{2}-(\rho-\delta) N}$.
§ 2. Construction of fundamental solution. Definition 2.1 (cf. [10]). $\mathcal{E}_{t}^{0}\left(S_{\lambda, \rho, \delta}^{m}\right)\left(\mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{m}\right)\right)$ is the set of all functions $p(t ; x, \xi)$ of class $S_{\lambda, \rho, \delta}^{m}$ which are continuous (infinitely differentiable) with respect to parameter t for $t \geqslant 0$.

Definition 2.2 (cf. [10]). We say $\left\{p_{j}(x, \xi)\right\}_{j=0}^{\infty}$ of $S_{2, \rho, \delta}^{m}$ converges to $p(x, \xi) \in S_{\lambda, \rho, \delta}^{m}$ weakly, if $\left\{p_{j}(x, \xi)\right\}_{j=0}^{\infty}$ make a bounded set of $S_{\lambda, \rho, \delta}^{m}$ and $p_{j(\beta)}^{(\alpha)}(x, \xi)$ converges to $p_{(\beta)}^{(\alpha)}(x, \xi)$ as $j \rightarrow \infty$ uniformly on K for any α, β, where K is any compact set in $R_{x}^{n} \times R_{\xi}^{n}$. We denote by $w-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta, \delta}^{m}\right)$ the set of all functions $p(t, s ; x, \xi)$ of class $S_{\lambda, \rho, \delta}^{m}(0 \leqslant s \leqslant t)$ which are continuous with respect to parameters t and s with weak topology of $S_{\lambda, \rho, \rho}^{m}$.

Theorem 2.1. Under the assumption (0.2) we can construct $E(t, s)=e\left(t, s ; x, D_{x}\right) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \partial}^{0}\right)(0 \leqslant s \leqslant t)$ which satisfies the following properties:
(i) $L E(t, s)=0 \quad$ in $t>s$.
(ii) $E(s, s)=I$.
(iii) For any N such that $-N(\rho-\delta)+m \leqslant 0$ we can write

$$
e(t, s ; x, \xi)=\sum_{j=0}^{N-1} e_{j}(t, s ; x, \xi)+r_{N}(t, s ; x, \xi),
$$

where

$$
e_{0}(t, s ; x, \xi)=\exp \left[-\int_{s}^{t} p(\sigma ; x, \xi) d \sigma\right], \quad e_{j}(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{-(\rho-\delta) j}\right)
$$

and $r_{N}(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \rho}^{-(\rho-\delta) N+m}\right)$. Moreover we get

$$
e_{j(\beta)}^{(\alpha)}(t, s ; x, \xi)=a_{j, \alpha, \beta}(t, s ; x, \xi) e_{0}(t, s ; x, \xi) \quad(j \geqslant 1)
$$

where

$$
\left|a_{j, \alpha, \beta}(t, s ; x, \xi)\right| \leqslant C_{\alpha, \beta}^{\prime} \lambda(x, \xi)^{-\rho|\alpha|+\delta| | \mid-(\rho-\delta) j} \sum_{k=2}^{|\alpha|+|\beta|+2 j}\left\{\int_{s}^{t} \operatorname{Rep}(\sigma ; x, \xi) d \sigma\right\}^{k}
$$

Also, $E(t, s)$ is unique in class $w-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \bar{\delta}}^{k}\right)$ satisfying (i) and (ii) for any k.

We can construct $E(t, s)$ by the same method with the proof of Theorem in [10], using Theorem 1.1 and Theorem 1.3. The uniqueness is proved applying the energy inequality.

Example 1. $L_{1}=\frac{\partial}{\partial t}+D_{x}^{2 l}+x^{2 k} \quad$ in $(0, \infty) \times R_{x}^{1}$.
Example 2. $L_{2}=\frac{\partial}{\partial t}+\left(D_{x}+i x^{k}\right)\left(D_{x}-i x^{k}\right) \quad$ in $(0, \infty) \times R_{x}^{1}$.
We can take $\lambda(x, \xi)=\left(1+\xi^{2 l}+x^{2 k}\right)^{1 / 2 l}, \rho=1, \delta=-l / k, m=2 l$ in Example 1 and $\lambda(x, \xi)=\left(1+\xi^{2}+x^{2 k}\right)^{1 / 2}, \rho=1, \delta=-1 / k, m=2$ in Example 2.

Theorem 2.2. Under the same condition with Theorem 2.1 the adjoint operator $E^{*}(t, s)\left(\in w-\mathcal{E}_{t, s}^{0}\left(S_{\lambda, \rho, \delta}^{0}\right)\right)$ satisfies

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} E^{*}(t, s)+E^{*}(t, s) P^{*}(t)=0 \quad \text { in } t>s \\
E^{*}(s, s)=I
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
-\frac{\partial}{\partial s} E^{*}(t, s)+P^{*}(s) E^{*}(t, s)=0 \quad \text { in } t>s \\
E^{*}(t, t)=I
\end{array}\right.
$$

Corollary. If $P(t)$ is independent of t, then the fundamental solution $E(t, s)=E(t-s)$ satisfies also

$$
\frac{\partial}{\partial t} E(t)+E(t) P=0 \quad \text { in } t>0
$$

If $P=P^{*}$, then $E(t)=E^{*}(t)$.
Remark. We can prove the similar theorems in this section for $p(t ; x, \xi) \in \mathcal{E}_{t}^{0}\left(S_{\lambda, e, \delta}^{m}\right)$ under the conditions

$$
\left\{\begin{array}{l}
\operatorname{Re} p(t ; x, \xi) \geqslant c_{0} \lambda(x, \xi)^{m^{\prime}} \quad 0 \leqslant m^{\prime} \leqslant m, \\
\left|p_{(\beta)}^{(\alpha)}(t ; x, \xi) / \operatorname{Rep}(t ; x, \xi)\right| \leqslant C_{\alpha, \beta} \lambda(x, \xi)^{-\rho|\alpha|+\delta|\beta|} \quad \text { for any } \alpha, \beta
\end{array}\right.
$$

by using complex powers $\left\{P_{z}\left(x, D_{x}\right)\right\}$ for $P\left(x, D_{x}\right)$ (cf. [7], [10]).
§ 3. Behavior of $\boldsymbol{E}(\boldsymbol{t}, \boldsymbol{s})$ at $(\boldsymbol{t}-\boldsymbol{s}) \rightarrow \infty$. In this section let $p(t ; x, \xi)$ $\in \mathcal{E}_{t}^{\infty}\left(S_{\lambda, \rho, \delta}^{m}\right)(m>0)$ satisfy (0.2) and

$$
\begin{equation*}
\operatorname{Re}(P(t) u, u) \geqslant c_{1}\|u\|^{2}, \quad 0 \leqslant t<\infty \quad \text { for any } u \in \mathcal{S}, \tag{3.1}
\end{equation*}
$$

with a positive constant c_{1}. Moreover let the basic weight function $\lambda(x, \xi)$ satisfy (i) for $a>0$.

Theorem 3.1. Let $t_{0}>s_{0} \geqslant 0$. Then for any integers $l_{f}(j=1,2,3)$ there exists a positive constant $C\left(l_{j}, t_{0}, s_{0}\right)$ such that

$$
\left.\left|\partial_{t}^{l_{1}} e\left(t, s_{0}\right)\right|\right|_{3} ^{\left(-l_{2}\right)} \leqslant C\left(l_{j}, t_{0}, s_{0}\right) \exp \left\{-c_{2}\left(t-t_{0}\right)\right\} \quad \text { for } t \geqslant t_{0}
$$

where c_{2} is any number $c_{2}<c_{1}$.
Note that $e(t, s ; x, \xi) \in w-\mathcal{E}_{t, s}^{\infty}\left(S_{\lambda}^{-\infty}\right)(t>s)$ according to Theorem 2.1, and that $f(t, s ; x, \xi)=e^{i x \cdot \xi} e(t, s ; x, \xi)$ satisfies

$$
L f(t, s ; x, \xi)=0 \quad \text { in } t>s
$$

Then Theorem 3.1 is proved by the following lemmas.
Lemma 3.1. Let $u(t) \in \mathcal{E}_{t}^{\infty}(\mathcal{S})$ satisfy $L u(t)=g(t)$ in $t>t_{0}$. Then. for any $b \geqslant 0$ and any $c_{2}<c_{1}$ there exists $B>0$ such that

$$
\|u(t)\|_{\lambda_{2} b} \leqslant B\left[\exp \left\{-c_{2}\left(t-t_{0}\right)\right\}\left\|u\left(t_{0}\right)\right\|_{\lambda_{, b}}+\int_{t_{0}}^{t} \exp \left\{-c_{2}(t-\sigma)\right\}\|g(\sigma)\|_{2, b} d \sigma\right]
$$

Lemma 3.2. For any $u \in \mathcal{S}$

$$
C_{b}^{-1}|u|_{[a b-(n+1) / 2], \mathcal{S}} \leqslant\|u\|_{2, b} \leqslant C_{b}|u|_{\left[\tilde{z}_{0}(b+1)+(n+1) / 2\right], \mathcal{S}}
$$

where $|u|_{0, \mathcal{S}}=\sup _{|\alpha|+|\beta| \leqslant b}\left|(1+|x|)^{\alpha} \partial_{x}^{\beta} u(x)\right|$ and $\tilde{\tau}_{0}=\max \left(1, \tau_{0}\right)$.
§ 4. Application to operators of degenerate type. At first we apply the above theorems for the construction of fundamental solution for L_{0}. If we construct the fundamental solution $f\left(t ; x, D_{x}, \eta\right)$ for $(\partial / \partial t)+D_{x}^{2 l}+x^{2 k} \eta^{2 m}$, then $f\left(t ; x, D_{x}, D_{y}\right)$ is the fundamental solution for L_{0}. $f(t ; x, \xi, \eta)$ is given by

$$
\begin{align*}
f(t ; x, \xi, \eta) & =e\left(t|\eta|^{\sigma} ; x|\eta|^{\sigma / 2 l}, \xi|\eta|^{-\sigma / 2 l}\right) & & (\eta \neq 0), \tag{4.1}\\
& =\exp \left(-\xi^{2 l} t\right) & & (\eta=0),
\end{align*}
$$

where $\sigma=2 l m /(k+l)$ and $e(t ; x, \xi)$ is the symbol of the fundamental solution of L_{1} of Example 1. With respect to $f(t ; x, \xi, \eta)$, we get by Theorem 2.1, Theorem 3.1 and (4.1)

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{r} f(t ; x, \xi, \eta)\right| \leqslant C_{\alpha, \beta, \gamma} \mu(x, \xi, \eta)^{-\beta-(l / k) \alpha}|\eta|^{(m / k) \alpha-r} \quad \eta \neq 0
$$

and $f(t ; x, \xi, \eta) \in S_{\lambda}^{-\infty}(t>0)$, where $\mu(x, \xi, \eta)=|\xi|+|x|^{k / l}|\eta|^{m / l}+|\eta|^{m / k+l)}$.
Set

$$
\int_{0}^{\infty} f(t ; x, \xi, \eta) d t=k(x, \xi, \eta) .
$$

Then from Theorem 2.1 and Theorem 3.1 we have

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{r} k(x, \xi, \eta)\right| \leqslant C_{\alpha, \beta, \gamma} \mu(x, \xi, \eta)^{-2 l-\beta-(l / k) \alpha}|\eta|^{(m / k) \alpha-\gamma} \quad \eta \neq 0 .
$$

A left and right parametrix Q for P_{0} is constructed by using $k(x, \xi, \eta)$ for $|\xi| \leqslant c|\eta|^{m / l}$ and the usual method of construction of the parametrix for $|\xi| \geqslant c|\eta|^{m / l} . \quad \sigma(Q)=q(x, \xi, \eta)$ satisfies

$$
\begin{equation*}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{\eta}^{r} q(x, \xi, \eta)\right| \leqslant C_{\alpha, \beta, \eta} \tilde{\mu}(x, \xi, \eta)^{-2 l-\beta-(l / k) \alpha} \nu(\xi, \eta)^{(m / k) \alpha-r} \tag{4.2}
\end{equation*}
$$

for any ξ, η,
where $\nu(\xi, \eta)=1+|\xi|^{[/ m}+|\eta|$ and $\tilde{\mu}(x, \xi, \eta)=1+\mu(x, \xi, \eta)$.
We note that $q(x, \xi, \eta)$ belongs to $S_{\tilde{\phi}, \varphi}^{-2 l \log \tilde{\mu}}$ treated in Beals [1], if we choose weight vector $\Phi_{1}=\tilde{\mu}^{l / k} \nu^{m(k-l) / k(k+l)}, \Phi_{2}=\nu, \varphi_{1}=\tilde{\mu}^{l / k} \nu^{-m / k}, \varphi_{2}=1$ in case $k \geqslant l$ and $\Phi_{1}=\tilde{\mu}, \Phi_{2}=\nu, \varphi_{1}=\tilde{\mu} \nu^{-2 m /(k+l)}, \varphi_{2}=1$ in case $k<l$ by (4.2).

Let $P=D_{x}-i x^{k} D_{y}^{m}$ (cf. [6], [8]). We consider ($\partial / \partial t$) $+P^{*} P$ and $(\partial / \partial t)+P P^{*}$ applying the similar argument. Then we get that P has a left parametrix if $k=$ even and a right parametrix if $k=$ even or $k=$ odd and $m=$ even.

References

[1] Beals, R.: A general calculus of pseudodifferential operators (to appear).
[2] Grushin, V. V.: Hypoelliptic differential equations and pseudo-differential operators with operator-valued symbols. Mat. Sb., 88, 504-521 (1972).
[3] Hörmander, L.: Hypoelliptic second order differential equations. Acta Math., 119, 147-174 (1967).
[4] Hoel, C.: Fundamental solutions of some degenerate operators. J. Differential Equations, 15, 379-417 (1974).
[5] Kumano-go, H.: Pseudo-differential operators of multiple symbol and the Calderón-Vaillancourt theorem. J. Math. Soc. Japan, 27, 113-120 (1975).
[6] Kumano-go, H., and Taniguchi, K.: Oscillatory integrals of symbols of operators on R^{n} and operators of Freadholm type. Proc. Japan Acad., 49, 397-402 (1973).
[7] Kumano-go, H., and Tsutsumi, C.: Complex powers of hypoelliptic pseudodifferential operators with applications. Osaka J. Math., 10, 147-174 (1973).
[8] Mizohata, S.: Solutions nulles et solutions non analytiques. J. Math. Kyoto Univ., 1, 271-302 (1962).
[9] Sjöstrand, J.: Parametrices for pseudodifferential operators with multi-ple-characteristics. Ark. Mat., 12, 85-130 (1974).
[10] Tsutsumi, C.: The fundamental solution for a degenerate parabolic pseudodifferential operator. Proc. Japan Acad., 50, 11-15 (1974).

