88. The Baire Category Theorem in Ranked Spaces

By Shizu NAKANISHI

University of Osaka Prefecture

(Comm. by Kinjirô KUNUGI, M. J. A., June 3, 1975)

In this note, we study the Baire category theorem for a ranked space of indicator ω_0 (ω_0 is the first nonfinite ordinal). Throughout this note, the term "ranked space" will mean a ranked space of indicator ω_0 . Terminologies and notations concerning ranked spaces will be the same as in [5], in particular, N will denote the set $\{0, 1, 2, \dots\}, V(p), W(p), \dots$ preneighborhoods of p, and $V(p, n), W(p, n), \dots$ those of rank n of p.

1. The Baire category theorem. For a ranked space, we define the notion of nowhere dense as follows.

Definition 1. Let (E, \mathbb{CV}) be a ranked space. A subset A of E is said to be *nowhere dense* in E if, for every $V(p) \in \mathbb{CV}$, there exists a $V(q) \in \mathbb{CV}$ such that $V(q) \subset V(p)$ and $V(q) \cap A = \phi$.

Moreover, as in [2] we define:

Definition 2. For a ranked space (E, \mathcal{CV}) , a subset A of E is said to be of *first category* if it is a countable union of nowhere dense sets. All other subsets of E are said to be of *second category*. A subset Aof E is said to be *dense* in E if, for every $V(p) \in \mathcal{CV}$, we have $V(p) \cap A$ $\neq \phi$. The ranked space (E, \mathcal{CV}) is called a *Baire space* if, for every subset A of E which is of first category, the complement E-A is dense in E.

As is easily seen, if (E, \mathcal{CV}) is a ranked space for which we can topologise E in such a way that the family of all sets belonging to \mathcal{CV} is a base of neighborhoods, then the notion of Baire category in (E, \mathcal{CV}) coincides with that in the topological space E topologised in this way.

We first prove the following theorem.

Theorem 1. Every complete ranked space is a Baire space.

Already, for a ranked space whose indicator is an arbitrary inaccessible limit ordinal, the same theorem has been proved by K. Kunugi [2], [4] under the assumption that the family \mathcal{CV} of preneighborhoods in the ranked space satisfies the following conditions (B) and (C).

(B) For every $V_1(p)$, $V_2(p) \in \mathcal{CV}$, there exists a $V_3(p) \in \mathcal{CV}$ such that $V_3(p) \subset V_1(p) \cap V_2(p)$.

(C) For every $V(p) \in \mathbb{CV}$, if $q \in V(p)$, then there exists a $V(q) \in \mathbb{CV}$ such that $V(q) \subset V(p)$.

Theorem 1 asserts that if we define nowhere dense as in Definition

1 and if the indicator of the ranked space is ω_0 , then Kunugi's result holds without the assumptions of (B) and (C).

Proof of Theorem 1. Let (E, \mathcal{CV}) be a complete ranked space. Let $A = \bigcup_{i=1}^{m} H_i$, where each H_i is nowhere dense in E, and let $V(p) \in CV$. We will show that $V(p) \cap (E-A) \neq \phi$. We first put $G_i = E - H_i$ for all *i*. Then, since H_0 is nowhere dense in *E*, there exists a $V(q_0) \in \mathcal{CV}$ such that $V(q_0) \subset V(p)$ and $V(q_0) \subset G_0$. Also, by the axiom (a) of ranked space, there exists a $V(q_0, n_0) \in \mathcal{CV}$ such that $V(q_0, n_0) \subset V(q_0)$. Thus, for V(p), we may take a $V(q_0, n_0)$ such that $V(q_0, n_0) \subset V(p) \cap G_0$. Moreover, by the axiom (a), we may take a $V(q_1, n_1) \in \mathcal{V}$ such that $V(q_1, n_1)$ $\subset V(q_0, n_0), q_1 = q_0 \text{ and } n_1 > n_0.$ Suppose that $V(q_j, n_j)$ $(j=0, 1, 2, \dots, 2i)$ -1) have been chosen such that $V(q_0, n_0) \supset V(q_1, n_1) \supset \cdots \supset V(q_{2i-1}, n_{2i-1}), q_{2j}$ $=q_{2j+1} \text{ for } 0 \le j \le i-1, n_0 < n_1 < \cdots < n_{2i-1}, \text{ and } V(q_{2j}, n_{2j}) \subset V(p) \cap G_j \text{ for}$ $0 \le j \le i-1$. Then, since H_i is nowhere dense in E, we may take, as in the case of i=0, a $V(q_{2i}, n_{2i}) \in \mathcal{V}$ such that $V(q_{2i}, n_{2i}) \subset V(q_{2i-1}, n_{2i-1})$ $\cap G_i$ and $n_{2i} > n_{2i-1}$, and a $V(q_{2i+1}, n_{2i+1})$ such that $V(q_{2i+1}, n_{2i+1})$ $\subset V(q_{2i}, n_{2i}), q_{2i+1} = q_{2i}$ and $n_{2i+1} > n_{2i}$. We thus obtain a fundamental sequence $\{V(q_i, n_i)\}$ such that $\cap V(q_i, n_i) \subset V(p) \cap (\cap G_i)$. Hence, V(p) $\cap (E-A) \neq \phi$ follows from the completeness of (E, \mathbb{CV}) .

Example 1 (due to K. Kunugi [4]). Let R^2 be the 2-dimensional Euclidean space and let $p \in R^2$, $p = (x_0, y_0)$. For each $n \in N$ and for each real number l such that $2 \le l < +\infty$, we denote by V(p; n, l) the set $\{(x, y); 0 \le (x - x_0)(y - y_0) \le 1/n + 1, 0 \le x - x_0 \le l, 0 \le y - y_0 \le l\}$, by $CV_n(p)$ the family of all V(p; n, l) such that $2 \le l \le +\infty$, and by CV(p) the family $\cup \{CV_n(p); n \in N\}$. Then, (R^2, CV, CV_n) , where $CV = \cup \{CV(p); p \in R^2\}$ and $CV_n = \cup \{CV_n(p); p \in R^2\}$, is a complete ranked space which does not satisfy (C*) (see 2 below) weaker than (C).

2. Characterizations of Baire spaces. We give some definitions which are needed for other characterizations of Baire spaces.

Definition 3. Let $(E, \mathbb{C}V)$ be a ranked space, and let A be a subset of E. Then, A is called *open* if, for every $p \in A$, there exists a $V(p) \in \mathbb{C}V$ such that $V(p) \subset A$. A is called *closed* if E-A is open. The set $\cup \{O; O \text{ is open, } O \subset A\}$ is called the *interior* of A and denoted by A^i . The set $\cap \{F; F \text{ is closed}, A \subset F \subset E\}$ is called the *closure* of A and denoted by A^a .

Moreover, for (E, \mathbb{C}) , we consider the following condition.

For every $V(p) \in \mathcal{CV}$, there exists a $W(p) \in \mathcal{CV}$ such that W(p)(C*) $\subset V(p)$ and such that, for every $q \in W(p)$, there exists a $V(q) \in \mathcal{CV}$ such that $V(q) \subset V(p)$.

Then, we have

Proposition 1. If, for a ranked space $(E, \mathbb{C}/), \mathbb{C}/$ satisfies (\mathbb{C}^*) , then a subset A of E is nowhere dense in E if and only if A^a is nowhere

dense in E.

Proposition 2. For a ranked space $(E, \subseteq V)$, let us consider the following.

(a) (E, \mathbb{CV}) is a Baire space.

(β) Every countable intersection of open dense sets in E is dense in E.

(7) For every countable family F_n $(n=1,2,\cdots)$ of closed sets satisfying $E = \bigcup F_n$, $\bigcup (F_n)^i$ is dense in E.

Then, we have: (1) If $\subseteq V$ satisfies (B) and (C*), then (α) implies (β) and (γ); (2) If $\subseteq V$ satisfies (C*), then each of (β) and (γ) implies (α).

The proofs of these propositions are similar to those of the corresponding results in topological spaces.

3. Complete ranked spaces and α -favorable topological spaces (due to G. Choquet [1]). As a technique for deciding when a given topological space is Baire, G. Choquet [1] has introduced the notion of α -favorable, stemming from game theory, and proved that every α favorable topological space is a Baire space. The following proposition shows the connection between the notion of completeness in ranked spaces and the notion of α -favorable.

Proposition 3. Let E be a topological space for which we can define a complete ranked space (E, \heartsuit) such that $(1): \heartsuit$ is a family consisting of neighborhoods in E which forms a base for the topology of E, furthermore \heartsuit has the property (2): there exists a $k \in N$ such that if, for $V(p, n), V(q, m) \in \heartsuit, V(p, n) \supset V(q, m)$ and $V(q, m) \neq \{q\}$, then $n \leq m+k$. Then, E is α -favorable.

Proof. We define a map f of $\mathbb{C}V$ into $\mathbb{C}V^{*}$ in such a way that: if $V(p) \in \mathbb{C}V$, then f(V(p)) is a $V(p, n) \in \mathbb{C}V$ for which there exists a $V(p, m) \in \mathbb{C}V$ such that $V(p, n) \subset V(p, m) \subset V(p)$ and m+k < n. The existence of such a V(p, n) follows from the axiom (a) of ranked space. We will prove that if $\{V(p_{2i}); i=0, 1, 2, \cdots\}$ is a sequence of neighborhoods defined inductively so that

 $V(p_0) \supset V(p_1) = f(V(p_0)) \supset V(p_2) \supset V(p_3) = f(V(p_2)) \supset \cdots,$ then $\cap V(p_{2i}) \neq \phi$. We put $f(V(p_{2i})) = V(p_{2i}, n_{2i})$. Then, we may obtain a sequence $\{V(p_{2i}, m_{2i}); i=0, 1, 2, \cdots\}$ of neighborhoods such that $(1^\circ):$ $m_{2i} + k < n_{2i}$ for all *i*, and such that $V(p_{2i}, n_{2i}) \subset V(p_{2i}, m_{2i}) \subset V(p_{2i})$ for all *i*, and therefore $(2^\circ): V(p_0, m_0) \supset V(p_0, n_0) \supset \cdots \supset V(p_{2i}, m_{2i}) \supset V(p_{2i}, n_{2i})$ $\supset \cdots$. In (2°) , if $V(p_{2i}, m_{2i}) \neq \{p_{2i}\}$ for all *i*, then by (2) and (1°) , we have $m_0 + k < n_0 \le m_2 + k < n_2 \le \cdots$, and so a subsequence of (2°) is fundamental. Hence, $\cap V(p_{2i}, n_{2i}) \neq \phi$. If, in (2°) , there exists an *i*₀ such that $V(p_{2i_0}, m_{2i_0}) = \{p_{2i_0}\}$, then $\cap V(p_{2i}, n_{2i}) = \{p_{2i_0}\}$. Thus, $\cap V(p_{2i}) \neq \phi$ follows.

No. 6]

^{*)} We remark that [1], 7.13 holds under the assumption that \mathcal{I}^* in [1], 7.11 is a base of neighborhoods.

The following examples are topological spaces satisfying the assumptions of Proposition 3.

Example 2. Complete metric spaces.

Let *E* be a complete metric space with a distance function *d* and let $p \in E$. We denote the set $\{q \in E; d(p, q) < 1/2^n\}$ by S(p, n). If *p* is an isolated point of *E*, we put $V(p) = \{p\}$ and define $\mathbb{CV}_n(p) = \{V(p)\}$ for all $n \in N$. If not, there exists a subsequence of $N: n_0(p) < n_1(p) < \cdots$ $< n_k(p) < \cdots$ such that $n_0(p) = 0$ and such that, for every $k, S(p, n_{k+1}(p))$ is a proper subset of $S(p, n_k(p))$ and $S(p, n_k(p)) = S(p, n)$ for all $n_k(p)$ $\le n < n_{k+1}(p)$. Using $\{n_k(p)\}$, we define $\mathbb{CV}_n(p)$ as follows. For $n \in N$, if $n = n_k(p)$ for some $k \in N, \mathbb{CV}_n(p) = \{S(p, n)\}$, that is, S(p, n) is the only preneighborhood of rank *n* of *p*; otherwise, $\mathbb{CV}_n(p) = \phi$. Then, $(E, \mathbb{CV}, \mathbb{CV}_n)$ is a desired ranked space if we put $\mathbb{CV} = \bigcup \{\mathbb{CV}(p); p \in E\}$, where $\mathbb{CV}(p) = \bigcup \{\mathbb{CV}_n(p); n \in N\}$, and put $\mathbb{CV}_n = \bigcup \{\mathbb{CV}_n(p); p \in E\}$ (cf. [3], Theorem 1).

Example 3. Cartesian products of the real lines, endowed with the product topology.

In this case, the ranked space obtained by putting $V(x_1, x_2, \dots, x_n; m) = \{f(x); |f(x_i)| \le 1/2^m\}$ in [3], Example, is a desired ranked space.

References

- [1] G. Choquet: Lectures on Analysis, Vol. 1. W. A. Benjamin (1969).
- [2] K. Kunugi: Sur les espaces complets et régulièrement complets. I. Proc. Japan Acad., 30, 553-556 (1954).
- [3] —: Sur une généralisation de l'intégrale. Fundamental and Applied Aspects of Math. (published by Res. Inst. of Applied Electricity, Hokkaido Univ.), pp. 1-30 (1959).
- [4] ——: On the method of ranked spaces. Noda Mathematical Pamphlet Series, 1, 1-15 (1969) (in Japanese).
- [5] S. Nakanishi: On the strict union of ranked metric spaces. Proc. Japan Acad., 50, 603-607 (1974).