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1. Introduction. We study the structure of singular supports
o undametal solutions of hyperbolic mixed problems with constant
coefficients in a quarter space. Duff published a basic paper on this
subject ([2]) in 1964. Although its results are precise, the paper seems
to be difficult to understand. Matsumura [4] studied it by means of
"Localization theorem" developed by L. HSrmander [3] and Atiyah-
Bott-Grding [1], but he did not treat the analysis o the udamental
solutions at branch points appearing in reflection coefficients. In this
paper we give the "Generalized localization theorem", and by this
theorem we can explain the presence of lateral waves.

We thank Prof. Matsumura for having communicated us that
Wakabayashi is publishing a note on the same subject ([7]). His
results are more restrictive than ours. A orthcoming paper will give
detailed proofs and more precise results.

2. Notations and representation of fundamental solutions.
Let 9={(t, x, y) t0, x0, y e R). We consider the problem

P(Dt, Dx, Dv)u--0 in tO_
(2.1) B(Dt, Dx, Dr)u=0 on/2 {x----0}, ]-- 1, 2,...

[(u, Du, ..., D-u) (0, 0, ..., 0, i_,)) on {t--0},
where i)Dt=--i3t, D=--i3, D----i(3,,, ...,), ii) l0, and
iii) P and B (]--1, 2, ...,/) are homogeneous differential operators of
degree m and m (] 1, 2,. .,/) with constant coefficients. We assume

( A.I ) P is strictly hyperbolic with respect to t,
(A.II) x=0 is not characteristic with respect for P,
(A.III) The mixed problem (2.1) is -well posed.
The characterization of ’-well posedness was given by Sakamoto

[5]. We write the dual coordinates of (t, x, y) by (a, , ]) e R/, and
put r--a-i (-0). From (A.I), there exists no real zero of P(r, , ])
with respect to or r=a--i (0), (a, 7) e Rn/l. From (A.III), the
number of roots of P with positive imaginary parts is equal to /.
Therefore we can represent P as follows"

P(r, , ) const ]-[= (-’(r, ])). ]-[ -"__ ( (r, ))
--const P+(r, ]; ).P_(r, ]; )

where Im .(r, ])0. Here we define the matrix L(r, ]) by
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( 1 ff B(r,,)-d)L(r,V)= 2i r+ P+(r,;)
where F+ is a simple closed path containing all (r, V) (i= 1, 2, ..., g).
We put R(r, )-- det L(r, 0 and R(r, O=(k, ])-cofactor of L(r, ). From
(A.III), we get R(r, )0 for v=a--i (>0) and (a, )e R=+. Now we
construct the fundamental solution of (2.1). We define Eo(t, x, y; ) by

Eo(t, x, y; )= dd

which is the solution of P(D,, D, D)E0=(,,_,,v) in R+, i.e., describes
the incident propagation of waves due to a point source (,_,). We
put E(t, x, y; D-u(t, x, y; g)-Eo(t, x, y; g) where u is a fundamental
solution of (2.1). Then E is represented as follows"

x e(*++v-’)daddd’.
The location of sing supp E0 is well known. Thereore we aim to
determine the location of sing supp E.. Localization theorem. Let P0= (a0, 0, 0, ) be any point in
R+. We try to expand exp {--is(tao+ Xo+yo--g)}E(t, x, y; g) with
respect to s. For this we study the properties of roots of P(r, , )
=0. We denote the discriminant of P(r, , 0-0 with respect to by
D(r, ) and write P(r, , ) % (r--(, V)). Then i) ,(, ) (, )
if i] and (,00, ii) ,(,0 is a real-valued homogeneous unction
of degree 1 and analytic in R+--{0}. Let P(ao, o, 0) =0, 0(a0, 0, 0)
e R+. Then there exists uniquely satisfying a0=@0, Vo). At
first, we study the behavior of roots =(r, r) of P(ao + rr, , o+rO
=0 in a neighborhood of r=0 satisfying (r, ; 0)=0.

Case I. Assume D(ao, 0)0. Then 3(0,0)0 and (r, ; r) is
analytic in a neighborhood o r=0. Moreover R(r, ) is analytic in a
neighborhood of (ao, 0). Hence we get

Lemma 1. If we expand (r, r) as ==o a(r, )r, then

(,2(0, 0))-(r =,,2(0, 0)).
Lemma 2. We expand R(ao + rr, Vo + r) as R=r =0 R(r, v)r*,

then Ro(r, V) is a hyperbolic polynomial of degree po with respect to r.

Case II. Assume D(ao, 0)=0. Then we can represent P(r, , ) as
ollows P(r, , ) {(--0)’+ b(r, V)(-- 0),- +... + b,(v, )}P(r,; )
P0(r, ; )P(r, ; ) where i) b,(ao, 0)=0 and b,(r, ) is holomorphic
in a neighborhood of (ao,0), ii) P(a0,0; o)0. We remark that
P(a0, V0; )=0 may have real multiple roots. Hence the number of
roots of P(ao+rr,,o+rO=O satisfying (r,; 0)=0 is m. We
denote them by (r, ; r), (r, V; r), ., ,(v, r).
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Lemma 3. We expand (r, r) as -,o c(r, 0r/’, then
i) Co=o, c,(r, 0=const (r-__ 3(0, o))TM,

ii) For any c(r, ) there exists an integer p such that c(r,)
c(r, ) is polynomial.

Lemma 4. We write real multiple roots of P(ao,,o)=0 with
respect to by , ,..., , and their multiplicities by m,..., ma.
Moreover we put a0= (,0). We expand R(ao+rr,o+r0 as R
==0 R(r, )r(po p p ), then

where Q(r,) is polynomial and flO (i=1,2, ..., q). Moreover
Ro(r, )0 or r=a-iT (>0), (a, ) e R+.

Remark. I we assume
(A.IV) If P(a,,)=0 has real multiple roots with respect to

for O(a,) e R+, the number of real multiple roots is at moss one,
then R0(r, ) is represented as R0=ro(r, )(r--= 2,(, 0))" where
to(r, 0 is a homogeneous hyperbolic polynomial with respect to r and
a is a rational number. Therefore the assumption (A.IV) makes clr
the representation o R0(r, ), but it is not necessary or the proof
Theorem 1. By Seidenberg’s lemma we get the ollowing lemma.

Lemm . R(r, ) satisfies the following estimate"
sup [r-"R(ao+rr, 0+r)]=K([r[+])

where >0 and fl is an constant independent of (r, V) and r.
Next we state a lemma concerning the distributions.

Lemma 6. Let a=(a, a, ., a) e R" and a1, 2, 3, Then

where t--t for t>O, and =0 for
Under the above preparations, we try to localize E(t, x, y

e-(t+=+-;>E(t, x, y; g)

,= k/ + R(ao+rr, Vo+r)P+(ao+rr,o+r; o+r)
B(ao+ rr, Vo + r, + r’) e(t++=,>daddd,

=s=- [ G(ao + rr, o+ r, o+r, + r’)
Rn+3

where sr= 1. Using Lemma 1 Lemma 4, we can expand G as ollows"
G =o G(r, , , ’; Po)r, po<p<p<’", Po-(ao, o, o, ),

where i) if D(a0,o)0, p are integers, and ii) if D(a0,o)=0, p are
rational numbers. We define F as
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F(t, x, y, Po)

I G(r, , r], ’; Po)e(++-’)daddTd’(3 1)

and put e=--m--l--p. Then, using Lemma 5, we get the ollowing
Theorem I. I) For any Po (o, o, o, ) e R" + E has an follow-

ing asymptotic expansion

(3.2) e-"t++-E(, x, y;) F(t, x, , Po)s
j=O

which has $he following proper$y" For every integer N $he error

(.) - e-"+e*"-;N (t, z, , g Po)
teg to i ’(gxR) when.

2) sing su ND su N(t, , , g Po).

Remark 1. Nor obtaining this heorem, we can relaee the
assumption (A.I) by he less restrictive assumption (A.I)"
(A.I)’ P= P where P i trietl herbolie.

Remark . In he mixed problems ig happens the ease
sup N,supP (1). herefore we mus consider other (1)
and by his fae we can explain he presence of lateral waves.
A las we ealeulate anyN concretely by using Lemma 1Lemma

4. This is no diNeul.
4. Lateral waves. In his section we sudy he singularities

arising from branch oints appearing in G(r, , , ’; Po). If P(eo, , )
0 or P(o, , )0, hen all N=0 in ’(9 XR) =0. Hence we assume
P(o, o, ,)=P@,, , )=0 andu=2(,, ,) and -2,(, ). When
D@,o)O, there is no branch oin in G(r,,, ’) and it is easy
calculate G. Now we reat the ease D@o, )=0. Pot simplicity we
assume (A.IV). We denote a real multiple root of P(, , ,)=0 by
and assume that is not multiple roo of P@, , )=0. We ut
=2(, ), then 02(, )=0. Using Lemma lLemma 4, we expand
G(a+ r, +, +, +’) with respect to r. hen i follows

) B(,,)eonst .,R(, -Go=
R0(r, )(r--(grade, 2(, 0), (, )))(--(grad, 2(, ), (’, )))

Ro(r, )=ro(r, )(r--,,.= 3,,(o, 7o)).
If in (3.4) a=0 or its numerator=0, we consider the next term or the
more rear term. Then there exists the case where we can find the
term G such that

G const Q(r, , , ’)(-__(o, o))"
to(r, )"’(r-- (grad,, ,($o, 1o), ($, 0>)"’(r-- (grad,, ,(, o), @’,

where ao:/:0, 1,2, ...,a>0 (i=1,2,3), and Q is polynomial. Hence if
F0, it must be ,(,o)>0 and ,(o,o)<0. From Theorem 1



No. 6] Fundamental Solutions of Mixed Problems 373

we get
(3.5) sing supp Esupp F.
We explain the meaning o (3.5). For simplicity we treat the case
r0(r, )=const. We consider an incident wave travelling from a point

.n+lsource at (t, x, y)=(0, g, 0) in the directioa --aE(1 a, ., a) e .,
where a0=(32(, 0))- and a=2(, ]0)a0 (i=1, 2, ...,n). This
wave reaches the boundary when t=aog and its arrival point is (x, y)
=--(0, ag,...,ag). For this incident wave an ordinary reflected
wve S is determined, i.e., S={32,($o,o)(t-aog)+y+ag=O (i
=1,2,...,n), 32,(o,o)(t-aog)+x=O, t-aog>O, g>0}. Moreover
rom Lemma 6 we see that there exists a wave S propagating oa the
boundary, i.e., S={32(0, o)(t-aog) +y+ag=0 (i= 1, 2, ..., n), x=0,
t-a0g>0, g>0}, and we get

supp F $1 + $2
where S +S.= {(t + t, x+ x, y+ y) (t, x, y) e S, i- 1, 2}. We call
S+S as lateral wave or branch wave.
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