79. Fundamental Solutions of Mixed Problems for Hyperbolic Equations with Constant Coefficients

By Mikio Tsujı
Department of Mathematics, Kyoto Industrial University
(Comm. by Kôsaku Yosida, M. J. A., June 3, 1975)

§ 1. Introduction. We study the structure of singular supports of fundamental solutions of hyperbolic mixed problems with constant coefficients in a quarter space. Duff published a basic paper on this subject ([2]) in 1964. Although its results are precise, the paper seems to be difficult to understand. Matsumura [4] studied it by means of "Localization theorem" developed by L. Hörmander [3] and Atiyah-Bott-Gårding [1], but he did not treat the analysis of the fundamental solutions at branch points appearing in reflection coefficients. In this paper we give the "Generalized localization theorem", and by this theorem we can explain the presence of lateral waves.

We thank Prof. Matsumura for having communicated us that Wakabayashi is publishing a note on the same subject ([7]). His results are more restrictive than ours. A forthcoming paper will give detailed proofs and more precise results.
§ 2. Notations and representation of fundamental solutions. Let $\Omega=\left\{(t, x, y) ; t>0, x>0, y \in R^{n}\right\}$. We consider the problem

$$
\left\{\begin{array}{l}
P\left(D_{t}, D_{x}, D_{y}\right) u=0 \quad \text { in } \Omega \tag{2.1}\\
B_{j}\left(D_{t}, D_{x}, D_{y}\right) u=0 \quad \text { on } \bar{\Omega} \cap\{x=0\}, j=1,2, \cdots, \mu, \\
\left(u, D_{t} u, \cdots, D_{t}^{m-1} u\right)=\left(0,0, \cdots, 0, i \delta_{(x-l, y)}\right) \quad \text { on } \bar{\Omega} \cap\{t=0\},
\end{array}\right.
$$

where i) $D_{t}=-i \partial_{t}, D_{x}=-i \partial_{x}, D_{y}=-i\left(\partial_{y_{1}}, \partial_{y_{2}}, \cdots, \partial_{y_{n}}\right)$, ii) $l>0$, and iii) P and $B_{j}(j=1,2, \cdots, \mu)$ are homogeneous differential operators of degree m and $m_{j}(j=1,2, \cdots, \mu)$ with constant coefficients. We assume
(A.I) P is strictly hyperbolic with respect to t,
(A.II) $x=0$ is not characteristic with respect for P,
(A.III) The mixed problem (2.1) is \mathcal{E}-well posed.

The characterization of \mathcal{E}-well posedness was given by Sakamoto [5]. We write the dual coordinates of (t, x, y) by $(\sigma, \xi, \eta) \in R^{n+2}$, and put $\tau=\sigma-i \gamma(\gamma>0)$. From (A.I), there exists no real zero of $P(\tau, \xi, \eta)$ with respect to ξ for $\tau=\sigma-i \gamma(\gamma>0),(\sigma, \eta) \in R^{n+1}$. From (A.III), the number of roots of P with positive imaginary parts is equal to μ. Therefore we can represent P as follows:

$$
\begin{aligned}
P(\tau, \xi, \eta) & =\operatorname{const} \prod_{j=1}^{\mu}\left(\xi-\xi_{j}^{+}(\tau, \eta)\right) \cdot \prod_{j=1}^{m-\mu}\left(\xi-\xi_{j}^{-}(\tau, \eta)\right) \\
& =\mathrm{const} P_{+}(\tau, \eta ; \xi) \cdot P_{-}(\tau, \eta ; \xi)
\end{aligned}
$$

where $\operatorname{Im} . \xi_{j}^{ \pm}(\tau, \eta) \gtrless 0$. Here we define the matrix $L(\tau, \eta)$ by

$$
L(\tau, \eta)=\left(\frac{1}{2 \pi i} \oint_{\Gamma_{+}} \frac{B_{j}(\tau, \xi, \eta) \xi^{k-1}}{P_{+}(\tau, \eta ; \xi)} d \xi\right)_{1 \leq j, k \leq \mu}
$$

where Γ_{+}is a simple closed path containing all $\xi_{i}^{+}(\tau, \eta)(i=1,2, \cdots, \mu)$. We put $R(\tau, \eta)=\operatorname{det} L(\tau, \eta)$ and $R_{j k}(\tau, \eta)=(k, j)$-cofactor of $L(\tau, \eta)$. From (A.III), we get $R(\tau, \eta) \neq 0$ for $\tau=\sigma-i \gamma(\gamma>0)$ and $(\sigma, \eta) \in R^{n+1}$. Now we construct the fundamental solution of (2.1). We define $E_{0}(t, x, y ; \ell)$ by

$$
E_{0}(t, x, y ; \ell)=\left(\frac{1}{2 \pi}\right)^{n+2} \int_{R^{n+2}} \frac{e^{i\left(t z+(x-\ell) \xi+y_{\eta}\right)}}{P(\tau, \xi, \eta)} d \sigma d \xi d \eta
$$

which is the solution of $P\left(D_{t}, D_{x}, D_{y}\right) E_{0}=\delta_{(t, x-\ell, y)}$ in R^{n+2}, i.e., describes the incident propagation of waves due to a point source $\delta_{(t, x-\ell, y)}$. We put $E_{1}(t, x, y ; \ell)=u(t, x, y ; \ell)-E_{0}(t, x, y ; \ell)$ where u is a fundamental solution of (2.1). Then E_{1} is represented as follows:

$$
\begin{equation*}
E_{1}(t, x, y ; \ell)=\sum_{j, k=1}^{n}\left(\frac{1}{2 \pi}\right)^{n+3} \int_{R^{n+3}} \frac{R_{j k}(\tau, \eta) \xi^{j-1} B_{k}\left(\tau, \xi^{\prime}, \eta\right)}{R(\tau, \eta) P_{+}(\tau, \eta ; \xi) P\left(\tau, \xi^{\prime}, \eta\right)} \tag{2.2}
\end{equation*}
$$

The location of $\operatorname{sing} \operatorname{supp} E_{0}$ is well known. Therefore we aim to determine the location of sing $\operatorname{supp} E_{1}$.
§ 3. Localization theorem. Let $P_{0}=\left(\sigma_{0}, \xi_{0}, \eta_{0}, \xi_{0}^{\prime}\right)$ be any point in R^{n+3}. We try to expand $\exp \left\{-i s\left(t \sigma_{0}+x \xi_{0}+y \eta_{0}-\ell \xi_{0}^{\prime}\right)\right\} E_{1}(t, x, y ; \ell)$ with respect to s. For this we study the properties of roots ξ of $P(\tau, \xi, \eta)$ $=0$. We denote the discriminant of $P(\tau, \xi, \eta)=0$ with respect to ξ by $D(\tau, \eta)$ and write $P(\tau, \xi, \eta)=\prod_{j=1}^{m}\left(\tau-\lambda_{j}(\xi, \eta)\right)$. Then i) $\lambda_{i}(\xi, \eta) \neq \lambda_{j}(\xi, \eta)$ if $i \neq j$ and $(\xi, \eta) \neq 0$, ii) $\lambda_{i}(\xi, \eta)$ is a real-valued homogeneous function of degree 1 and analytic in $R^{n+1}-\{0\}$. Let $P\left(\sigma_{0}, \xi_{0}, \eta_{0}\right)=0,0 \neq\left(\sigma_{0}, \xi_{0}, \eta_{0}\right)$ $\in R^{n+2}$. Then there exists λ_{k} uniquely satisfying $\sigma_{0}=\lambda_{k}\left(\xi_{0}, \eta_{0}\right)$. At first, we study the behavior of roots $\xi=\xi(\tau, \eta ; r)$ of $P\left(\sigma_{0}+r \tau, \xi, \eta_{0}+r \eta\right)$ $=0$ in a neighborhood of $r=0$ satisfying $\xi(\tau, \eta ; 0)=\xi_{0}$.

Case I. Assume $D\left(\sigma_{0}, \eta_{0}\right) \neq 0$. Then $\partial_{\varepsilon} \lambda_{k}\left(\xi_{0}, \eta_{0}\right) \neq 0$ and $\xi(\tau, \eta ; r)$ is analytic in a neighborhood of $r=0$. Moreover $R(\tau, \eta)$ is analytic in a neighborhood of (σ_{0}, η_{0}). Hence we get

Lemma 1. If we expand $\xi(\tau, \eta ; r)$ as $\xi=\sum_{k=0}^{\infty} a_{k}(\tau, \eta) r^{k}$, then

$$
\begin{aligned}
a_{1}(\tau, \eta) & =\partial_{t} \xi\left(\sigma_{0}, \eta_{0}\right) \tau+\sum_{i=1}^{n} \partial_{\eta_{i}} \xi\left(\sigma_{0}, \eta_{0}\right) \eta_{i} \\
& =\left(\partial_{\xi} \lambda_{k}\left(\xi_{0}, \eta_{0}\right)\right)^{-1}\left(\tau-\sum_{j=1}^{n} \partial_{\eta_{j}} \lambda_{k}\left(\xi_{0}, \eta_{0}\right) \eta_{j}\right) .
\end{aligned}
$$

Lemma 2. We expand $R\left(\sigma_{0}+r \tau, \eta_{0}+r \eta\right)$ as $R=r^{\rho_{0}} \sum_{k=0}^{\infty} R_{k}(\tau, \eta) r^{k}$, then $R_{0}(\tau, \eta)$ is a hyperbolic polynomial of degree ρ_{0} with respect to τ.

Case II. Assume $D\left(\sigma_{0}, \eta_{0}\right)=0$. Then we can represent $P(\tau, \xi, \eta)$ as follows: $P(\tau, \xi, \eta)=\left\{\left(\xi-\xi_{0}\right)^{m_{1}}+b_{1}(\tau, \eta)\left(\xi-\xi_{0}\right)^{m_{1}-1}+\cdots+b_{m_{1}}(\tau, \eta)\right\} P_{1}(\tau, \eta ; \xi)$ $\equiv P_{0}(\tau, \eta ; \xi) P_{1}(\tau, \eta ; \xi)$ where i) $b_{i}\left(\sigma_{0}, \eta_{0}\right)=0$ and $b_{i}(\tau, \eta)$ is holomorphic in a neighborhood of $\left(\sigma_{0}, \eta_{0}\right)$, ii) $P_{1}\left(\sigma_{0}, \eta_{0} ; \xi_{0}\right) \neq 0$. We remark that $P_{1}\left(\sigma_{0}, \eta_{0} ; \xi\right)=0$ may have real multiple roots. Hence the number of roots ξ of $P\left(\sigma_{0}+r \tau, \xi, \eta_{0}+r \eta\right)=0$ satisfying $\xi(\tau, \eta ; 0)=\xi_{0}$ is m_{1}. We denote them by $\xi_{1}(\tau, \eta ; r), \xi_{2}(\tau, \eta ; r), \cdots, \xi_{m_{1}}(\tau, \eta ; r)$.

Lemma 3. We expand $\xi_{i}(\tau, \eta ; r)$ as $\xi_{i}=\sum_{k=0}^{\infty} c_{k}(\tau, \eta) r^{k / m_{1}}$, then
i) $c_{0}=\xi_{0}, c_{1}(\tau, \eta)=\operatorname{const}\left(\tau-\sum_{j=1}^{n} \partial_{\eta_{j}} \lambda_{k}\left(\xi_{0}, \eta_{0}\right) \eta_{j}\right)^{1 / m_{1}}$,
ii) For any $c_{k}(\tau, \eta)$ there exists an integer p such that $c_{1}(\tau, \eta)^{p} \times$ $c_{k}(\tau, \eta)$ is polynomial.

Lemma 4. We write real multiple roots of $P\left(\sigma_{0}, \xi, \eta_{0}\right)=0$ with respect to ξ by $\xi_{1}^{0}, \xi_{2}^{0}, \cdots, \xi_{q}^{0}$, and their multiplicities by m_{1}, \cdots, m_{q}. Moreover we put $\sigma_{0}=\lambda_{k_{i}}\left(\xi_{i}^{0}, \eta_{0}\right)$. We expand $R\left(\sigma_{0}+r \tau, \eta_{0}+r \eta\right)$ as R $=\sum_{k=0}^{\infty} R_{k}(\tau, \eta) r^{\rho_{k}}\left(\rho_{0}<\rho_{1}<\rho_{2}<\cdots\right)$, then

$$
R_{0}(\tau, \eta)=\operatorname{dog}_{Q_{\beta}+\sum_{i=1}^{q}} \sum_{\beta_{i} / m_{i}=\rho_{0}} Q_{\beta}(\tau, \eta) \cdot \prod_{i=1}^{q}\left(\tau-\sum_{j=1}^{n} \partial_{\eta_{j}} \lambda_{k_{i}}\left(\xi_{i}^{0}, \eta_{0}\right) \eta_{j}\right)^{\beta_{i} / m_{i}}
$$

where $Q_{\beta}(\tau, \eta)$ is polynomial and $\beta_{i} \geqq 0(i=1,2, \cdots, q)$. Moreover

$$
R_{0}(\tau, \eta) \neq 0 \quad \text { for } \tau=\sigma-i \gamma(\gamma>0),(\sigma, \eta) \in R^{n+1}
$$

Remark. If we assume
(A.IV) If $P(\sigma, \xi, \eta)=0$ has real multiple roots with respect to ξ for $0 \neq(\sigma, \eta) \in R^{n+1}$, the number of real multiple roots is at most one, then $R_{0}(\tau, \eta)$ is represented as $R_{0}=r_{0}(\tau, \eta)\left(\tau-\sum_{j=1}^{n} \partial_{\eta_{j}} \lambda_{k_{1}}\left(\xi_{1}^{0}, \eta_{0}\right) \eta_{j}\right)^{\alpha}$ where $r_{0}(\tau, \eta)$ is a homogeneous hyperbolic polynomial with respect to τ and α is a rational number. Therefore the assumption (A.IV) makes clear the representation of $R_{0}(\tau, \eta)$, but it is not necessary for the proof of Theorem 1. By Seidenberg's lemma we get the following lemma.

Lemm 5. $R(\tau, \eta)$ satisfies the following estimate:

$$
\sup _{0<r<\theta}\left|r^{-\rho_{0}} R\left(\sigma_{0}+r \tau, \eta_{0}+r \eta\right)\right|^{-1} \leqq K(|\tau|+|\eta|)^{\beta}
$$

where $\varepsilon>0$ and β is an constant independent of (τ, η) and r.
Next we state a lemma concerning the distributions.
Lemma 6. Let $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in R^{n}$ and $\alpha \neq 1,2,3, \cdots$. Then

$$
\left(\frac{1}{2 \pi}\right)^{n+1} \int_{R^{n+1}}\left(\tau-\sum_{j=1}^{n} a_{j} \eta_{j}\right)^{\alpha} e^{i\left(t++\eta_{\eta}\right)} d \sigma d \eta=\frac{e^{\alpha \pi i / 2}}{\Gamma(-\alpha)} t_{+}^{-1-\alpha} \cdot \delta_{(y+t a)}
$$

where $t_{+}^{k}=t^{k}$ for $t>0$, and $=0$ for $t<0$.
Under the above preparations, we try to localize $E_{1}(t, x, y ; \ell)$.
$e^{-i s\left(t \sigma_{0}+x \xi_{0}+y \eta_{0}-\ell \xi_{0}^{\prime}\right)} E_{1}(t, x, y ; \ell)$

$$
\begin{gathered}
=s^{-1-m} \sum_{j, k=1}^{\mu}\left(\frac{1}{2 \pi}\right)^{n+3} \int_{R^{n+s}} \frac{R_{j k}\left(\sigma_{0}+r \tau, \eta_{0}+r \eta\right)\left(\xi_{0}+r \xi\right)^{j-1}}{R\left(\sigma_{0}+r \tau, \eta_{0}+r \eta\right) P_{+}\left(\sigma_{0}+r \tau, \eta_{0}+r \eta ; \xi_{0}+r \xi\right)} \\
\times \frac{B_{k}\left(\sigma_{0}+r \tau, \eta_{0}+r \eta, \xi_{0}^{\prime}+r \xi^{\prime}\right)}{P\left(\sigma_{0}+r \tau, \xi_{0}^{\prime}+r \xi^{\prime}, \eta_{0}+r \eta\right)} e^{i\left(t \tau+x \xi+\eta_{\eta}-r \xi^{\prime}\right)} d \sigma d \xi d \eta d \xi^{\prime} \\
=s^{-m-1} \int_{R^{n+3}} G\left(\sigma_{0}+r \tau, \xi_{0}+r \xi, \eta_{0}+r \eta, \xi_{0}^{\prime}+r \xi^{\prime}\right) \\
\quad \times e^{i\left(t \tau+x \xi+\eta_{\eta}-\ell \xi^{\prime}\right)} d \sigma d \xi d \eta d \xi^{\prime},
\end{gathered}
$$

where $s r=1$. Using Lemma $1 \sim$ Lemma 4 , we can expand G as follows:

$$
G=\sum_{i=0}^{\infty} G_{i}\left(\tau, \xi, \eta, \xi^{\prime} ; P_{0}\right) r^{\rho_{i}}, \quad \rho_{0}<\rho_{1}<\rho_{2}<\cdots, \quad P_{0}=\left(\sigma_{0}, \xi_{0}, \eta_{0}, \xi_{0}^{\prime}\right),
$$

where i) if $D\left(\sigma_{0}, \eta_{0}\right) \neq 0, \rho_{i}$ are integers, and ii) if $D\left(\sigma_{0}, \eta_{0}\right)=0, \rho_{i}$ are rational numbers. We define F_{k} as

$$
\begin{aligned}
& F_{k}\left(t, x, y, \ell ; P_{0}\right) \\
& \quad=\left(\frac{1}{2 \pi}\right)^{n+3} \int_{R^{n+3}} G_{k}\left(\tau, \xi, \eta, \xi^{\prime} ; P_{0}\right) e^{i\left(t+x \xi+2 \eta-\ell \xi^{\prime}\right)} d \sigma d \xi d \eta d \xi^{\prime}
\end{aligned}
$$

and put $e_{k}=-m-1-\rho_{k}$. Then, using Lemma 5, we get the following
Theorem 1. 1) For any $P_{0}=\left(\sigma_{0}, \xi_{0}, \eta_{0}, \xi_{0}^{\prime}\right) \in R^{n+3} E_{1}$ has an following asymptotic expansion

$$
\begin{equation*}
e^{-\imath s\left(t \sigma_{0}+x \xi_{0}+y \eta_{0}-\ell \xi_{0}\right)} E_{1}(t, x, y ; \ell) \sim \sum_{j=0}^{\infty} F_{j}\left(t, x, y, \ell ; P_{0}\right) s^{e_{j}} \tag{3.2}
\end{equation*}
$$

which has the following property: For every integer N the error

$$
\begin{equation*}
s^{-e_{N}}\left(e^{-i s\left(t t_{0}+x \xi_{0}+y \eta_{0}-\ell \xi_{0}^{\prime}\right)} E_{1}-\sum_{j=0}^{N-1} F_{j}\left(t, x, y, \ell ; P_{0}\right) s^{e_{j}}\right) \tag{3.3}
\end{equation*}
$$

tends to F_{N} in $\mathscr{D}^{\prime}\left(\Omega \times R_{+}^{1}\right)$ when $s \rightarrow \infty$.
2) $\operatorname{sing} \operatorname{supp} E_{1} \supset \bigcup_{P_{0} \in R^{n+3}} \bigcup_{j=0}^{\infty} \operatorname{supp} F_{j}\left(t, x, y, \ell ; P_{0}\right)$.

Remark 1. For obtaining this theorem, we can replace the assumption (A.I) by the less restrictive assumption (A.I)' :
(A.I)' $\quad P=\prod_{i=1}^{k} P_{i}^{m_{i}}$ where P_{i} is strictly hyperbolic.

Remark 2. In the mixed problems it happens the case that $\operatorname{supp} F_{0} \neq \operatorname{supp} F_{j}(j \geqq 1)$. Therefore we must consider other $F_{j}(j \geqq 1)$ and by this fact we can explain the presence of lateral waves.

At last we calculate any F_{k} concretely by using Lemma $1 \sim$ Lemma 4. This is not difficult.
§4. Lateral waves. In this section we study the singularities arising from branch points appearing in $G\left(\tau, \xi, \eta, \xi^{\prime} ; P_{0}\right)$. If $P\left(\sigma_{0}, \xi_{0}, \eta_{0}\right)$ $\neq 0$ or $P\left(\sigma_{0}, \xi_{0}^{\prime}, \eta_{0}\right) \neq 0$, then all $F_{j}=0$ in $\mathcal{D}^{\prime}\left(\Omega \times R_{+}^{1}\right)=0$. Hence we assume $P\left(\sigma_{0}, \xi_{0}, \eta_{0}\right)=P\left(\sigma_{0}, \xi_{0}^{\prime}, \eta_{0}\right)=0$ and put $\sigma_{0}=\lambda_{k_{1}}\left(\xi_{0}, \eta_{0}\right)$ and $\sigma_{0}=\lambda_{k_{2}}\left(\xi_{0}^{\prime}, \eta_{0}\right)$. When $D\left(\sigma_{0}, \eta_{0}\right) \neq 0$, there is no branch point in $G\left(\tau, \xi, \eta, \xi^{\prime}\right)$ and it is easy to calculate G_{j}. Now we treat the case $D\left(\sigma_{0}, \eta_{0}\right)=0$. For simplicity we assume (A.IV). We denote a real multiple root of $P\left(\sigma_{0}, \xi, \eta_{0}\right)=0$ by ζ_{0} and assume that ξ_{0} is not multiple root of $P\left(\sigma_{0}, \xi, \eta_{0}\right)=0$. We put σ_{0} $=\lambda_{j}\left(\zeta_{0}, \eta_{0}\right)$, then $\partial_{\xi} \lambda_{j}\left(\zeta_{0}, \eta_{0}\right)=0$. Using Lemma $1 \sim$ Lemma 4, we expand $G\left(\sigma_{0}+r \tau, \xi_{0}+r \xi, \eta_{0}+r \eta, \xi_{0}^{\prime}+r \xi^{\prime}\right)$ with respect to r. Then it follows

$$
\begin{equation*}
G_{0}=\frac{\text { const } \sum_{j, k=1}^{\mu} R_{j k}\left(\sigma_{0}, \eta_{0}\right) \xi_{0}^{j-1} B_{k}\left(\sigma_{0}, \xi_{0}^{\prime}, \eta_{0}\right)}{R_{0}(\tau, \eta)\left(\tau-\left\langle\operatorname{grad}_{\xi, \eta} \lambda_{k_{1}}\left(\xi_{0}, \eta_{0}\right),(\xi, \eta)\right\rangle\right)\left(\tau-\left\langle\operatorname{grad}_{\xi, \eta} \lambda_{k_{2}}\left(\xi_{0}^{\prime}, \eta_{0}\right),\left(\xi^{\prime}, \eta\right)\right\rangle\right)}, \tag{3.4}
\end{equation*}
$$

$$
R_{0}(\tau, \eta)=r_{0}(\tau, \eta)\left(\tau-\sum_{i=1}^{n} \partial_{c_{i}} \lambda_{j}\left(\zeta_{0}, \eta_{0}\right) \eta_{i}\right)^{\alpha} .
$$

If in (3.4) $\alpha=0$ or its numerator $=0$, we consider the next term or the more rear term. Then there exists the case where we can find the term G_{k} such that
$G_{k}=\frac{\text { const } Q\left(\tau, \xi, \eta, \xi^{\prime}\right)\left(\tau-\sum_{i=1}^{n} \partial_{\eta_{i}} \lambda_{j}\left(\zeta_{0}, \eta_{0}\right) \eta_{i}\right)^{\alpha_{0}}}{r_{0}(\tau, \eta)^{\alpha_{1}}\left(\tau-\left\langle\operatorname{grad}_{\xi, \eta} \lambda_{k_{1}}\left(\xi_{0}, \eta_{0}\right),(\xi, \eta)\right\rangle\right)^{\alpha_{2}}\left(\tau-\left\langle\operatorname{grad}_{\xi, \eta} \lambda_{k_{2}}\left(\xi_{0}^{\prime}, \eta_{0}\right),\left(\xi^{\prime}, \eta\right)\right\rangle\right)^{\alpha_{3}}}$ where $\alpha_{0} \neq 0,1,2, \cdots, \alpha_{i}>0(i=1,2,3)$, and Q is polynomial. Hence if $F_{k} \neq 0$, it must be $\partial_{\xi} \lambda_{k_{2}}\left(\xi_{0}^{\prime}, \eta_{0}\right)>0$ and $\partial_{\xi} \lambda_{k_{1}}\left(\xi_{0}, \eta_{0}\right)<0$. From Theorem 1
we get
(3.5)
sing $\operatorname{supp} E_{1} \supset \operatorname{supp} F_{k}$.
We explain the meaning of (3.5). For simplicity we treat the case $r_{0}(\tau, \eta)=$ const. We consider an incident wave travelling from a point source at $(t, x, y)=(0, \ell, 0)$ in the direction $-a_{0}^{-1}\left(1, a_{1}, \cdots, a_{n}\right) \in R_{x, y}^{n+1}$ where $a_{0}=\left(\partial_{\epsilon} \lambda_{k_{2}}\left(\xi_{0}^{\prime}, \eta_{0}\right)\right)^{-1}$ and $a_{i}=\partial_{\eta_{i}} \lambda_{k_{2}}\left(\xi_{0}^{\prime}, \eta_{0}\right) a_{0}(i=1,2, \cdots, n)$. This wave reaches the boundary when $t=a_{0} \ell$ and its arrival point is (x, y) $=-\left(0, a_{1} \ell, \cdots, a_{n} \ell\right)$. For this incident wave an ordinary reflected wave S_{1} is determined, i.e., $S_{1}=\left\{\partial_{\eta_{i}} \lambda_{k_{1}}\left(\xi_{0}, \eta_{0}\right)\left(t-a_{0} \ell\right)+y_{i}+a_{i} \ell=0 \quad\right.$ (i $\left.=1,2, \cdots, n), \quad \partial_{\xi} \lambda_{k_{1}}\left(\xi_{0}, \eta_{0}\right)\left(t-a_{0} \ell\right)+x=0, \quad t-a_{0} \ell>0, \quad \ell>0\right\}$. Moreover from Lemma 6 we see that there exists a wave S_{2} propagating on the boundary, i.e., $S_{2}=\left\{\partial_{\eta_{i}} \lambda_{j}\left(\zeta_{0}, \eta_{0}\right)\left(t-a_{0} \ell\right)+y_{i}+a_{i} \ell=0(i=1,2, \cdots, n), x=0\right.$, $\left.t-a_{0} \ell>0, \ell>0\right\}$, and we get

$$
\operatorname{supp} F_{k}=S_{1}+S_{2}
$$

where $S_{1}+S_{2}=\left\{\left(t_{1}+t_{2}, x_{1}+x_{2}, y_{1}+y_{2}\right) ;\left(t_{i}, x_{i}, y_{i}\right) \in S_{i}, i=1,2\right\}$. We call $S_{1}+S_{2}$ as lateral wave or branch wave.

References

[1] Atiyah-Bott-Gårding: Lacunas for hyperbolic differential operators with constant coefficients. I. Acta Math., 124, 109-198 (1970).
[2] G. F. D. Duff: On the wave fronts, and boundary waves. Comm. Pure Appl. Math., 17, 189-225 (1964).
[3] L. Hörmander: On the singularities of solutions of partial differential equations. Comm. Pure Appl. Math., 23, 329-358 (1970).
[4] M. Matsumura: Localization theorem in hyperbolic mixed problems. Proc. Japan Acad., 47, 115-119 (1971).
[5] R. Sakamoto: \mathcal{E}-well posedness for hyperbolic mixed problems with constant coefficients. J. Math. Kyoto Univ., 14, 93-118 (1974).
[6] M. Tsuji: Analyticity of solutions of hyperbolic mixed problems. J. Math. Kyoto Univ., 13, 323-371 (1973).
[7] S. Wakabayashi: Singularities of the Riemann functions of hyperbolic mixed problems in a quarter space (to appear).

