59. The Behavior of Solutions of the Equation of Kolmogorov-Petrovsky-Piskunov

By Kôhei Uchiyama
Tokyo Institute of Technology
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1977)

1. Given a source function $F(u)$ on $[0,1]$ which is positive on $0<u<1$ with $F(0)=F(1)=0$, continuously differentiable on $0 \leqq u \leqq 1$ and $F^{\prime}(0)>0$, let us consider the Cauchy problem

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+F(u) \quad t>0, x \in R=(\infty,+\infty) \tag{1}\\
& \lim _{t \downarrow 0} u(t, x)=f(x)
\end{align*}
$$

where an initial function f is piecewise continuous on R with $0 \leqq f \leqq 1$.
Let w_{c} denote a propagating front associated with speed $c: w_{c}(x-c t)$ is a non-trivial solution of (1)*) $\left(0 \leqq w_{c} \leqq 1\right)$, with normalization $w_{c}(0)=$ $1 / 2$. Our interest in this article lies in such phenomena that
(2) $u(t, x+m(t))$ converges to $w_{c}(x)$ as $t \rightarrow \infty$,
where

$$
m(t)=\sup \left\{x ; u(t, x)=\frac{1}{2}\right\}
$$

If $f \not \equiv 0$ and $f(x) \rightarrow 0$ as $x \rightarrow \infty$, we have that $u(t, x) \rightarrow 0$ as $x \rightarrow \infty$ and $u(t, x) \rightarrow 1$ as $t \rightarrow \infty$ (cf. [1]) and in particular that $m(t)$ has a definite value for large t. Aronson and Weinberger proved in [1] that there is a positive constant c_{0} called the minimal speed such that the propagating front associated with speed c exists iff $c^{2} \geqq c_{0}^{2}\left(c_{0}^{2} \geqq 2 F^{\prime}(0)\right.$; the propagating front is unique up to the translation for each c) (cf. also [3]). Such a phenomenon as described in (2) was first observed by Kolmogorov, Petrovsky and Piskunov [3]: they proved that (3) holds with $c=c_{0}$ if we take $f=I_{(-\infty, 0)}$ (the indicator function of the negative real axis). Kametaka [2] proved (2) when f belongs to a certain class of monotone functions. These are improved in the theorems of the next section which confirm that (2) is valid to a wide class of initial functions that contains all $f(0 \leqq f \leqq 1)$ with non-empty compact support.
2. Let $A(x)$ be a positive function on R such that $A\left(x+x_{0}\right) \sim A(x)$ as $x \rightarrow \infty$ for each $x_{0} \in R$. We will assume one of the following conditions on the behavior of f for large positive x :
(3) $f(x)=0$ for $x>N_{1}\left(N_{1} \in R\right)$ and $f \not \equiv 0$
or
*) Trivial solutions are $u \equiv 0$ and $u \equiv 1$.
(4)

$$
f(x) \sim A(x) e^{-b x} \quad \text { as } x \rightarrow \infty \quad(b>0)
$$

We must further impose a slight (probably technical) restriction on the tail of f at negative infinity :
(5) f is non-decreasing for $x<N_{2}\left(N_{2} \in R\right)$ or $\lim _{\inf _{x \downarrow-\infty}} f(x)>0$.

Theorem 1. Let $f(0 \leqq f \leqq 1)$ satisfy the condition (3) or the condition (4) with $b>c_{0}-\sqrt{c_{0}^{2}-2 F^{\prime}(0)}$ and satisfy the condition (5). Then (2) holds with $c=c_{0}$ uniformly in $x>N$ for each $N \in R$.*)

Theorem 2. Let $f(0 \leqq f \leqq 1)$ satisfy the condition (4) with $0<b$ $\leqq c_{0}-\sqrt{c_{0}^{2}-2 F^{\prime}(0)}$ and the condition (5). Then (2) holds with $c=b / 2$ $+F^{\prime}(0) / b$ uniformly in $x>N$ for each $N \in R$.

The next theorem is complementary to these theorems.
Theorem 3. Let $f(0 \leqq f \leqq 1)$ be differentiable and positive and satisfy $\lim \sup _{x \dagger_{\infty}}\left[-f^{\prime}(x) / f(x)\right] \leqq 0$ and $\lim _{x 1_{\infty}} f(x)=0$. Then, under the condition (5), $\lim _{t \dagger_{\infty}} u(t, x+m(t))=1 / 2$ uniformly on each compact set of R.

The method of the proofs of Theorems 1 and 2 is similar to that used by the authors mentioned in the previous section and summarized as follows. Define

$$
M(t)=\sup \left\{u(t, x) ; \frac{\partial u}{\partial x}(t, y)<0 \text { for all } y>x\right\} .
$$

Then under assumptions of Theorems 1 or 2 we have $M(t) \rightarrow 1$ as $t \rightarrow \infty$. Set

$$
\phi(t, w)=\frac{\partial u}{\partial x}(t, x(t, w)) \quad 0 \leqq w \leqq M(t)
$$

where $x(t, \cdot)$ is the inverse function of $u(t, \cdot)$. Considering ϕ as a functional of f, we denote it by $\phi(t, w ; f)$. Then $\phi\left(t, w ; w_{c}\right)$ is independent of t, since $w_{c}(x-c t)$ solves (1). We set $\tau_{c}(w)=\phi\left(t, w ; w_{c}\right)$. The theorems are proved by showing that $\phi(t, w ; f)$ converges to $\tau_{c}(w)$ as $t \rightarrow \infty$. This is carried out, at first, for an appropriately chosen initial function, say f_{*}, which is subject to several restrictions, and then for general f by applying a comparison theorem based on the maximum principle of the parabolic equation to the equation

$$
\frac{\partial w}{\partial t}=\frac{1}{2} \psi^{2} \frac{\partial^{2} \omega}{\partial w^{2}}-F(w) \frac{\partial \omega}{\partial w}+\left[F^{\prime}(w)+\frac{1}{2}(\phi+\psi) \frac{\partial^{2} \phi}{\partial w^{2}}\right] \omega,
$$

where $\phi=\phi(t, w ; f), \psi=\phi\left(t, w ; f_{*}\right)$ and $\omega=\phi-\psi$. This equation has the singularity at $w=0$, but we can justify the application of the comparison theorem using estimates: $\phi(t, w)=O(\sqrt{|\log \omega|} w)$ and $\left(\partial^{2} \phi / \partial w^{2}\right)(t, w)$ $=o(\sqrt{|\log w|} / w)$ as $w \downarrow 0$ uniformly in $T^{-1}<t<T$, which follow from Conditions (3) or (4).
3. Here are four theorems: the first one maintains the strong stability (in a certain sense) of the front w_{c} when $c^{2}>2 \sup _{0<u<1} F^{\prime}(u)$

[^0]and the remaining three give the criterion of whether or not $m(t)$ can be replaced by $c t+$ const in Theorems 1 or 2.

Theorem 4. Let $(1 / 2) c^{2} \geqq \gamma=\sup _{0<u<1} F^{\prime}(u)$ and $f(x)=w_{c}\left(x+x_{0}\right)$ $+O\left(e^{-b x}\right)$ with some constants b and x_{0}. Then

$$
u(t, x+c t)=w_{c}\left(x+x_{0}\right)+O\left(e^{-p t-b x}\right)
$$

where $p=b(c-b / 2-\gamma / b)$ (assuming $c>0, p>0$ is equivalent to $\left.c-\sqrt{c^{2}-2 \gamma}<b<c+\sqrt{c^{2}-2 \gamma}\right)$, and if $b>c$ we have

$$
u(t, x+c t)=w_{c}\left(x+x_{0}\right)+O\left(\frac{1}{\sqrt{t}} e^{-\left(c^{2} / 2-r\right) t}\right)
$$

uniformly in $x>N$ for each $N \in R$.
Theorem 5. Let $c>c_{0}$. Suppose that there exists $\lim _{x \dagger_{\infty}} e^{b x} f(x)$ $=a \leqq \infty$ where $b=c-\sqrt{c^{2}-2 F^{\prime}(0)}$ and that

$$
\int_{0+}\left|F^{\prime}(0)-F^{\prime}(u)\right| u^{-1} d u<\infty
$$

Then $m(t)-c t$ is bounded iff $0<a<\infty$. If this is the case, under the condition (5), it holds that with some constant x_{0}
(6) $u(t, x+c t) \longrightarrow w_{c}\left(x+x_{0}\right) \quad$ as $t \rightarrow \infty$
uniformly in $x>N$ for each $N \in R$.
Theorem 6. Let

$$
\int_{0+}\left|F^{\prime}(0)-F^{\prime}(u)\right||\log u| u^{-1} d u<\infty
$$

Assume that there exists another source function F^{*} such that $F^{*} \geqq F$, $F^{*} \not \equiv F$ and the minimal speed c_{0} is common to F and F^{*} (this implies $\left.c_{0}^{2}=2 F^{\prime}(0)\right)$. Further assume that there exists $\lim _{x \rightarrow \infty} e^{c_{0} x} f(x) / x=a \leqq \infty$. Then we have the same conclusion as Theorem 5 where c is replaced by c_{0}.

Theorem 7. Let $c_{0}^{2}>2 F^{\prime}(0)$. Then $m(t)-c_{0} t$ is bounded, provided that $f \not \equiv 0$ and $\lim _{\left.x\right|_{\infty}} e^{b x} f(x)=0$ for some constant $b>c_{0}-\sqrt{c_{0}^{2}-2 F^{\prime}(0)}$. In particular (6) holds with $c=c_{0}$ under the assumptions of Theorem 1.
4. Kolmogorov et al. [3] showed that $m^{\cdot}(t)=d m(t) / d t \rightarrow c_{0}$ as $t \rightarrow \infty$ in case $f=I_{(-\infty, 0)}$. The next theorem generalizes the result.

Theorem 8. Suppose that for some continuous function $k(t)$ there exists $\lim _{t \uparrow \infty} u(t, x+k(t))=g(x)$ in locally L_{1} sense, where g is not a constant. Then $g(x)=w_{c}\left(x+x_{0}\right)$ with some constants x_{0} and $c, c^{2} \geqq c_{0}^{2}$. If $m(t)$ is defined (for large t) by $u(t, m(t))=1 / 2$ and $m(t)-k(t)$ being bounded, then $m^{\prime}(t) \rightarrow c$ as $t \rightarrow \infty$. Furthermore $v(t, x)=u(t, x+m(t))$, $\partial v / \partial x$ and $\partial^{2} v / \partial x^{2}$ converge to w_{c}, w_{c}^{\prime} and $w_{c}^{\prime \prime}$, respectively, as $t \rightarrow \infty$ locally uniformly.

If $F(u) \leqq F^{\prime}(0) u$ for all $0 \leqq u \leqq 1$, we can obtain a fine estimate of $m(t)$, which is an improvement of McKean [4],

Theorem 9. Suppose $\boldsymbol{F}(u) \leqq F^{\prime}(0) u$ for all $0 \leqq u \leqq 1$ and

$$
\int_{0+}\left|F^{\prime}(0)-F^{\prime}(u)\right||\log u| u^{-1} d u<\infty
$$

Let f satisfy the condition (3). Then

$$
\text { const } \leqq m(t)-c_{0} t+\frac{3 \log t}{2 c_{0}} \leqq O(\log \log t)
$$

The proofs of these theorems will be published elsewhere.

References

[1] Aronson, D. G., and Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve propagation. Proc. Tulane Program in Partial Differential Equations, Lecture Notes in Math., No. 446, SpringerVerlag, New York (1975).
[2] Kametaka, Y.: On the non-linear diffusion equations of Kolmogorov-Petrovsky-Piskunov type. Osaka J. Math., 13, 11-66 (1976).
[3] Kolmogorov, A., Petrovsky, I., and Piskunov, N.: Etude de l'équation de la diffusion avec croissance de la quantité de la matière et son application à un ploblème biologique. Moscow Univ. Bull. Math., 1, 1-25 (1937).
[4] McKean, H. P.: Application of Brownian motion to the equation of Kolmogorov-Petrovsky-Piskunov. Comm. Pure Appl. Math., 28, 323-331 (1975) .

[^0]: *) The theorem is valid also in case $F^{\prime \prime}(0)=0$ if we adopt the latter one in the condition (5).

