59. The Behavior of Solutions of the Equation of Kolmogorov-Petrovsky-Piskunov

By Kôhei UCHIYAMA

Tokyo Institute of Technology

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1977)

1. Given a source function F(u) on [0,1] which is positive on $0 \le u \le 1$ with F(0) = F(1) = 0, continuously differentiable on $0 \le u \le 1$ and F'(0) > 0, let us consider the Cauchy problem

(1)
$$\frac{\partial u}{\partial t} = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + F(u) \qquad t > 0, \ x \in R = (\infty, +\infty)$$
$$\lim_{t \to 0} u(t, x) = f(x),$$

where an initial function f is piecewise continuous on R with $0 \leq f \leq 1$.

Let w_c denote a propagating front associated with speed $c: w_c(x-ct)$ is a non-trivial solution of $(1)^{*}$ $(0 \le w_c \le 1)$, with normalization $w_c(0) =$ 1/2. Our interest in this article lies in such phenomena that (2) u(t, x+m(t)) converges to $w_c(x)$ as $t \to \infty$, where

$$m(t) = \sup \left\{ x \, ; \, u(t, x) = \frac{1}{2} \right\}.$$

If $f \not\equiv 0$ and $f(x) \rightarrow 0$ as $x \rightarrow \infty$, we have that $u(t, x) \rightarrow 0$ as $x \rightarrow \infty$ and $u(t, x) \rightarrow 1$ as $t \rightarrow \infty$ (cf. [1]) and in particular that m(t) has a definite value for large t. Aronson and Weinberger proved in [1] that there is a positive constant c_0 called the minimal speed such that the propagating front associated with speed c exists iff $c^2 \ge c_0^2$ ($c_0^2 \ge 2F'(0)$; the propagating front is unique up to the translation for each c) (cf. also [3]). Such a phenomenon as described in (2) was first observed by Kolmogorov, Petrovsky and Piskunov [3]: they proved that (3) holds with $c = c_0$ if we take $f = I_{(-\infty,0)}$ (the indicator function of the negative real axis). Kametaka [2] proved (2) when f belongs to a certain class of monotone functions. These are improved in the theorems of the next section which confirm that (2) is valid to a wide class of initial functions that contains all $f(0 \le f \le 1)$ with non-empty compact support.

2. Let A(x) be a positive function on R such that $A(x+x_0) \sim A(x)$ as $x \to \infty$ for each $x_0 \in R$. We will assume one of the following conditions on the behavior of f for large positive x:

(3) f(x)=0 for $x > N_1(N_1 \in R)$ and $f \not\equiv 0$ or

[&]quot; Trivial solutions are $u \equiv 0$ and $u \equiv 1$.

(4) $f(x) \sim A(x)e^{-bx}$ as $x \to \infty$ (b>0). We must further impose a slight (probably technical) restriction on the tail of f at negative infinity:

(5) f is non-decreasing for $x \le N_2$ ($N_2 \in R$) or $\liminf_{x_1 \to \infty} f(x) \ge 0$.

Theorem 1. Let $f(0 \le f \le 1)$ satisfy the condition (3) or the condition (4) with $b > c_0 - \sqrt{c_0^2 - 2F'(0)}$ and satisfy the condition (5). Then (2) holds with $c = c_0$ uniformly in x > N for each $N \in \mathbb{R}^{*}$

Theorem 2. Let $f \ (0 \le f \le 1)$ satisfy the condition (4) with $0 < b \le c_0 - \sqrt{c_0^2 - 2F'(0)}$ and the condition (5). Then (2) holds with c = b/2 + F'(0)/b uniformly in x > N for each $N \in \mathbb{R}$.

The next theorem is complementary to these theorems.

Theorem 3. Let $f(0 \le f \le 1)$ be differentiable and positive and satisfy $\limsup_{x \neq \infty} [-f'(x)/f(x)] \le 0$ and $\lim_{x \neq \infty} f(x) = 0$. Then, under the condition (5), $\lim_{t \neq \infty} u(t, x + m(t)) = 1/2$ uniformly on each compact set of R.

The method of the proofs of Theorems 1 and 2 is similar to that used by the authors mentioned in the previous section and summarized as follows. Define

$$M(t) = \sup \left\{ u(t, x); \frac{\partial u}{\partial x}(t, y) < 0 \text{ for all } y > x \right\}.$$

Then under assumptions of Theorems 1 or 2 we have $M(t) \rightarrow 1$ as $t \rightarrow \infty$. Set

$$\phi(t, w) = \frac{\partial u}{\partial x}(t, x(t, w)) \qquad 0 \leq w \leq M(t)$$

where $x(t, \cdot)$ is the inverse function of $u(t, \cdot)$. Considering ϕ as a functional of f, we denote it by $\phi(t, w; f)$. Then $\phi(t, w; w_c)$ is independent of t, since $w_c(x-ct)$ solves (1). We set $\tau_c(w) = \phi(t, w; w_c)$. The theorems are proved by showing that $\phi(t, w; f)$ converges to $\tau_c(w)$ as $t \to \infty$. This is carried out, at first, for an appropriately chosen initial function, say f_* , which is subject to several restrictions, and then for general f by applying a comparison theorem based on the maximum principle of the parabolic equation to the equation

$$\frac{\partial w}{\partial t} = \frac{1}{2} \psi^2 \frac{\partial^2 \omega}{\partial w^2} - F(w) \frac{\partial \omega}{\partial w} + \left[F'(w) + \frac{1}{2} (\phi + \psi) \frac{\partial^2 \phi}{\partial w^2} \right] \omega,$$

where $\phi = \phi(t, w; f)$, $\psi = \phi(t, w; f_*)$ and $\omega = \phi - \psi$. This equation has the singularity at w = 0, but we can justify the application of the comparison theorem using estimates: $\phi(t, w) = O(\sqrt{|\log w|} w)$ and $(\partial^2 \phi / \partial w^2)(t, w) = o(\sqrt{|\log w|} / w)$ as $w \downarrow 0$ uniformly in $T^{-1} \le t \le T$, which follow from Conditions (3) or (4).

3. Here are four theorems: the first one maintains the strong stability (in a certain sense) of the front w_c when $c^2 > 2 \sup_{0 \le u \le 1} F'(u)$

^{*)} The theorem is valid also in case F'(0) = 0 if we adopt the latter one in the condition (5).

and the remaining three give the criterion of whether or not m(t) can be replaced by ct + const in Theorems 1 or 2.

Theorem 4. Let $(1/2)c^2 \ge \gamma = \sup_{0 \le u \le 1} F'(u)$ and $f(x) = w_c(x+x_0) + O(e^{-bx})$ with some constants b and x_0 . Then

 $u(t, x+ct) = w_c(x+x_0) + O(e^{-pt-bx}),$

where $p = b(c - b/2 - \gamma/b)$ (assuming c > 0, p > 0 is equivalent to $c - \sqrt{c^2 - 2\gamma} < b < c + \sqrt{c^2 - 2\gamma}$), and if b > c we have

$$u(t, x+ct) = w_{c}(x+x_{0}) + O\left(\frac{1}{\sqrt{t}}e^{-(c^{2}/2-\gamma)t}\right)$$

uniformly in x > N for each $N \in R$.

Theorem 5. Let $c > c_0$. Suppose that there exists $\lim_{x \downarrow \infty} e^{bx} f(x) = a \leq \infty$ where $b = c - \sqrt{c^2 - 2F'(0)}$ and that

$$\int_{0+} |F'(0) - F'(u)| \, u^{-1} du < \infty.$$

Then m(t)-ct is bounded iff $0 \le a \le \infty$. If this is the case, under the condition (5), it holds that with some constant x_0

(6) $u(t, x+ct) \longrightarrow w_c(x+x_0)$ as $t \to \infty$

uniformly in x > N for each $N \in R$.

Theorem 6. Let

$$\int_{0+} |F'(0) - F'(u)| |\log u| u^{-1} du < \infty.$$

Assume that there exists another source function F^* such that $F^* \ge F$, $F^* \not\equiv F$ and the minimal speed c_0 is common to F and F^* (this implies $c_0^2 = 2F'(0)$). Further assume that there exists $\lim_{x\to\infty} e^{c_0x} f(x)/x = a \le \infty$. Then we have the same conclusion as Theorem 5 where c is replaced by c_0 .

Theorem 7. Let $c_0^2 > 2F'(0)$. Then $m(t) - c_0 t$ is bounded, provided that $f \not\equiv 0$ and $\lim_{x \downarrow \infty} e^{bx} f(x) = 0$ for some constant $b > c_0 - \sqrt{c_0^2 - 2F'(0)}$. In particular (6) holds with $c = c_0$ under the assumptions of Theorem 1.

4. Kolmogorov *et al.* [3] showed that $m(t) = dm(t)/dt \rightarrow c_0$ as $t \rightarrow \infty$ in case $f = I_{(-\infty,0)}$. The next theorem generalizes the result.

Theorem 8. Suppose that for some continuous function k(t) there exists $\lim_{t \downarrow \infty} u(t, x + k(t)) = g(x)$ in locally L_1 sense, where g is not a constant. Then $g(x) = w_c(x+x_0)$ with some constants x_0 and $c, c^2 \ge c_0^2$. If m(t) is defined (for large t) by u(t, m(t)) = 1/2 and m(t) - k(t) being bounded, then $m'(t) \rightarrow c$ as $t \rightarrow \infty$. Furthermore v(t, x) = u(t, x + m(t)), $\partial v / \partial x$ and $\partial^2 v / \partial x^2$ converge to w_c , w'_c and w''_c , respectively, as $t \rightarrow \infty$ locally uniformly.

If $F(u) \leq F'(0)u$ for all $0 \leq u \leq 1$, we can obtain a fine estimate of m(t), which is an improvement of McKean [4].

Theorem 9. Suppose $F(u) \leq F'(0)u$ for all $0 \leq u \leq 1$ and

$$\int_{0+} |F'(0) - F'(u)| |\log u| \ u^{-1} du < \infty.$$

Let f satisfy the condition (3). Then

$$\operatorname{const} \leq m(t) - c_0 t + \frac{3 \log t}{2c_0} \leq O(\log \log t).$$

The proofs of these theorems will be published elsewhere.

References

- Aronson, D. G., and Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve propagation. Proc. Tulane Program in Partial Differential Equations, Lecture Notes in Math., No. 446, Springer-Verlag, New York (1975).
- [2] Kametaka, Y.: On the non-linear diffusion equations of Kolmogorov-Petrovsky-Piskunov type. Osaka J. Math., 13, 11-66 (1976).
- [3] Kolmogorov, A., Petrovsky, I., and Piskunov, N.: Etude de l'équation de la diffusion avec croissance de la quantité de la matière et son application à un ploblème biologique. Moscow Univ. Bull. Math., 1, 1-25 (1937).
- [4] McKean, H. P.: Application of Brownian motion to the equation of Kolmogorov-Petrovsky-Piskunov. Comm. Pure Appl. Math., 28, 323-331 (1975).