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The entitled theorem reads as follows" If the differential equation
( 1 ) dw/dz=R(z, w) (R is a rational function of z and w)
has a transcendental meromorphic solution w(z), then the equation
must be of the Riccati type, i.e., R(z, w) must be a polynomial of the
second degree in w.

In 1933 the present author gave, as an application of the Nevanlinna
theory ([5]) o meromorphic unctions, another proof of this striking
theorem o J. lVialmquist [4] dating 1913. In this proo (Yosida [9]
and [10]), a decisive role was played by a theorem o G. Valiron [6]:
( 2 ) T(r, R(z, w(z))1) --d. T(r, w(z))+ O(log r),
where d is the degree in w o R(z, w). In 1950, H. Wittich ([7] and
[8]) gave an alternate proo which is based upon the act that the order
o the meromorphic unction w(z) is finite and that its proximity func-
tion re(r, w(z)) is O(log r). Recently in 1974, E. Hille ([2] and [3]) gave
another approach proposing a geometric argument instead o Wittich’s
estimation via the calculus o residues. It is to be noted here that,
for the finiteness of the order o the meromorphic solution w(z), the
author gave in 1934 a straightforward proof ([10], Theorem 7) relying
upon the T. Shimizu-L. Ahlors-H. Cartan interpretation (see, e.g.,
[5], 165-) o the Nevanlinna characteristic T(r, w(z)).

In view of the above, I should like to show that my original idea
in [9] and [10] can be pursued to the result without appealing to the
theorem of Valiron nor to the Wittich-Hille type estimation.

We may assume that
( 3 ) R(z, w)=P(z, w)/Q(z, w)= (]$_-0 pj(z)wJ)/(,q=o q(z)w)
with polynomial coefficients p’s and q’s such that p(z).qq(z)O and
w-polynomials P(z, w) and Q(z, w) have no actos in common. By
virtue of the defect relation in the Nevanlinna theory, we have

1) We shall follow notations in [1]:

f(z))-(2)-1 ’o log If(re.0)] 48, N(r, f(z))T(r, f(z))-m(r, f(z))+N(r, f(z)),

_It t-(n(t, f(z))--n(O, f(z)))dt+n(O, f(z)).log r, where n(r, (f(z)) denotes the number

of poles of f(z) for Iz[_r, multiple poles being counted with the multiplicity.
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( 4 ) lim N r,.- w(z)-C
except possibly for countable sequence o complex numbers C’s. Hence
there exist a complex number Co and an increasing sequence o positive
numbers r’s with r $ c such that

( 1 .)/T(r, w(z))= 1( 4 )’ lira N r,
w(z)--Co

and
( 5 ) P(z, Co) - 0 and Q(z, Co) O.
Thus, by the first fundamental theorem of the Nevanlinna theory, we
have

( l ’)/T(r w(z))=O( 6 ) lira m r,
w(z) -Co

Next, by the transformation

( 7 ) W(z) 1
w(z)-Co

we obtain, rom (1) and (3),
( S ) dW/dz-P(z, W) / Q(z, W)
where the degrees in W o. P(z, W) and o Q(z, W) are

p and p 2, respectively when p 2 => q
( 9 ) or

q+ 2 and q, respectively when q p 2.
Hence we have
(10) dW/dz--a(z)W+a(z)W+ao(Z)+(P(z, W)/Q(z, W))
where a(z)’s are rational functions with a(z)_.O and the degree 15. in
W of. P.(z, W) satisfies

l=<(p-2)-I when (p-2) q,
(11) "/or2= q-- 1 when q (p-- 2).
Therefore the theorem of Malmquist is proved if we can show that
(12) P2(z, W)/(z, W) does not contain W.

The Proof of (12). Assume the contrary. Then (11) implies that

P2(z, W(z))/Q(z, W(z))--0 at every pole of W(z) except
(13)

(possibly for finite number of z’s.
Moreover,
(14) P(z, W(z))/Q(z, W(z))=W’(z)-a(z)W(z)-a(z)W(z)-ao(Z)
takes finite value for all z at which W(z) is finite, except possibly for
finite number of z’s. Therefore (as in Wittich [8] and Hille [3])
(15) N(r, P(z, W(z)) / Q(z, W(z))) O(log r).
Again by (14), we obtain (as in Wittich [8] and Hille [3])

m(r, P(z, W(z)) / Q(z, W(z)))
(16) _< m(r, W’(z)) + 2m(r, W(z)) + re(r, W(z)) + O(log r)

<= m(r, W(z)) + m(r, W’(z) / W(z)) + 3m(r, W(z)) + O(log r).
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On the other hand, as was stated in the beginning of the present note,
we obtain
(17) T(r, W(z))=O(r) with a positive integer/
by usingto the Shimizu-Ahlfors-Cartan interpretation of the Nevanlinna
characteristic T(r, W(z))"

for any00 and any non-void open set G o the complex plane,

(i 1)T(r, W(z))-O s-ds
(17)’ o (a,ot) (l+[W(te)1

tdtd8

where

D(G, ro_t<-s) denotes the set {te W(te) e G, ro_t<=s}.
In fact, substituting (8) in (17)’ and taking r00 and G appropriately,
we obtain (17). The finiteness of the order of W(z), expressed in (17),
implies re(r, W’(z)/W(z))-- O(log (r. T(r, W(z))) ([1], Theorem 2.2) and
so
(18) T(r, P.(z, W(z)) / Q(z, W(z)))-- O(log (r. T(r, W(z))) + O(m(r, W(z))
by (15) and (16). Moreover, we have, by (13) and the first undamental
theorem of the Nevanlinna theory,

T(r, P.(z, W(z)) / Q(z, W(z)) >= N(r, Q(z, W(z)) /P.(z, W(z))) / 0(1)
N(r, W(z))+O(log r) (as ]-.c).

This contradicts to (18) because of (4)’, (6), T(r, W(z))= T(r, w(z)) + 0(1)
and the act that log (r. T(r, W(z)))=o(T(r, W(z)) which is implied by
the transcendental meromorphic assumption of W(z).

We have thus proved (12) and so the proof of the theorem of
Malmquist is completed.
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