53. Reparametrization and Equicontinuous Flows

By Jirō Egawa

Faculty of General Education, Kobe University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1978)

Let X be a topological space, and R denotes the set of real numbers. A continuous mapping $\pi: X \times R \to X$ is said to be a dynamical system or a flow on (a phase space) X if π satisfies the following two conditions:

(1) $\pi(x,0)=x$ for $x \in X$,

(2) $\pi(\pi(x,t),s) = \pi(x,t+s)$ for $x \in X$ and $t,s \in R$.

 $C_{\pi}(x)$ denotes the orbit of π through $x \in X$. In this paper we always assume that phase spaces of flows are compact and connected metric spaces, and that every flow admits no singular point $(x \in X \text{ is called } a$ singular point of π if $C_{\pi}(x) = \{x\}$). A flow π is said to be equicontinuous if $\{\pi_t\}_{t \in R}$ forms an equicontinuous family of homeomorphism of Xonto Y, where π_t is defined by $\pi_t(x) = \pi(x, t)$ for $x \in X$. Let π and ρ be flows on X and Y, respectively. A homeomorphism h of X onto Y is called an isomorphism of π onto ρ if $h(C_{\pi}(x)) = C_{\rho}(h(x))$ for $x \in X$. In this case, it is known ([1]) that there exists a continuous function $\phi: X \times R \to R$, which is called the reparametrization for h, satisfying $h(\pi(x, t)) = \rho(h(x), \phi(x, t))$ for $(x, t) \in X \times R$. We can easily verify the above reparametrization ϕ satisfies the following condition (A):

(A) $\phi(x, t+s) = \phi(\pi(x, t), s) + \phi(x, t)$ for $x \in X$ and $t, s \in R$. Further, if the both flows are equicontinuous, then ϕ is uniformly continuous on $X \times R$ ([2]). In this paper we shall show the following

Theorem. Let π be an equicontinuous flow on X, and let ϕ be a continuous function on $X \times R$ satisfying the property (A). If ϕ is uniformly continuous on $X \times R$, then there exist a real number α and a continuous function $\Phi: X \rightarrow R$ satisfying

$$\phi(x,t) = -\phi(\pi(x,t)) + \phi(x) + \alpha t \qquad for \ (x,t) \in X \times R.$$

To prove the theorem, we need several lemmas. Put $F_t(x) = \frac{\phi(x,t)}{t}$ for $(x,t) \in X \times [1,\infty)$.

Lemma 1. $\{F_t\}_{t\geq 1}$ is uniformly bounded and equicontinuous.

Proof. Equicontinuity of $\{F_i\}$ follows from the uniform continuity of ϕ . By the property (A) we have

$$\phi(x, t) = \phi(\pi(x, t-1), 1) + \phi(x, t-1)$$

Reparametrization and Equicontinuous Flows

$$\phi(x,t) = \sum_{k=1}^{[t]} \phi(\pi(x,t-k),1) + \phi(x,t-[t])$$

for $(x, t) \in X \times [1, \infty)$. It follows that

$$egin{aligned} |F_t(x)| &\leq rac{1}{t} ([t]+1) M_1 \ &= rac{[t]}{t} \Big(1 + rac{1}{[t]} \Big) M_1 \leq 2 M_1 \end{aligned}$$

for $(x,t) \in X \times [1,\infty)$, where $M_1 = \sup_{x \in X, |t| \le 1} \{ |\phi(x,t)| \}$. Consequently, $\{F_t\}_{t \ge 1}$ is uniformly bounded.

Lemma 2. F_t converges uniformly to a constant as $t \rightarrow \infty$.

Proof. At first, we shall show F_n (*n*: integer) converges as $n \to \infty$. Put $f(x) = \phi(x, 1)$ and $H(x) = \pi(x, 1)$ for $x \in X$, and f is continuous on X and H is a homeomorphism of X onto X. By equicontinuity of π , we can see that the powers $\{H^k\}_{k=1,2,\dots}$ of H forms an equicontinuous family of homeomorphisms of X onto X. Thus, since for each n and for $x \in X$

$$F_{n}(x) = \frac{1}{n} \sum_{k=1}^{n} \phi(\pi(x, n-k), 1)$$

= $\frac{1}{n} \sum_{k=1}^{n} f(H^{n-k}(x)) = \frac{1}{n} \sum_{k=0}^{n-1} f(H^{k}(x))$

 $\lim_{n\to\infty} F_n(x) \text{ exists for each } x \in X \ ([4]). Further, we have$

$$\begin{split} |F_{t}(x) - F_{[t]}(x)| &= \left| \frac{\phi(x,t)}{t} - \frac{\phi(x,[t])}{[t]} \right| \\ &= \left| \frac{\phi(\pi(x,[t]), t - [t]) + \phi(x,[t])}{t} - \frac{\phi(x,[t])}{[t]} \right| \\ &\leq \left| \frac{\phi(\pi(x,[t]), t - [t])}{t} \right| + \left| \frac{\phi(x,[t])}{[t]} \left(\frac{[t]}{t} - 1 \right) \right| \\ &\leq \frac{M_{1}}{t} + F_{[t]}(x) \left(1 - \frac{[t]}{t} \right) \to 0 \end{split}$$

as $t \to \infty$. It follows that $\lim_{t \to \infty} F_t(x)$ exists for each $x \in X$, and hence, by Lemma 1, there exists a continuous function $\alpha: X \to R$ such that $F_t \to \alpha$ uniformly as $t \to \infty$.

Let $x_0 \in X$ be fixed, and let $A = \{x \in X ; \alpha(x) = \alpha(x_0)\}$. Then A is closed, because α is continuous. Further, A is open in X. In fact, by uniform continuity of ϕ , for each $x \in A$ there exists a $\delta > 0$ such that $\sup_{t \in R} \{|\phi(x, t) - \phi(y, t)|\} \leq 1$ for $y \in X$ with $d_x(x, y) < \delta$. For this y we have $|F_t(x) - F_t(y)| \leq \frac{1}{t}$ for $t \geq 1$, and hence, we have $\alpha(x) = \alpha(y)$, i.e., $y \in A$. This implies A is even in X. Since X is connected, we have A = X.

This implies A is open in X. Since X is connected, we have A=X. Thus a continuous function α must be a constant.

No. 7]

203

Put $\psi(x,t) = \phi(x,t) - \alpha t$ for $(x,t) \in X \times R$, where α is the constant in Lemma 2.

Lemma 3. ψ is uniformly continuous and bounded on $X \times [0, \infty)$.

Proof. Uniform continuity of ψ follows from uniform continuity of ϕ . Let $x \in X$ be fixed, and choose a $\delta > 0$ so that $|\phi(x, t) - \phi(y, t)| < 1$ for $(y, t) \in X \times R$ with $d_X(x, y) < \delta$. Then we can show that $|\psi(x, t_0)| \le 1$ for $t_0 \in [0, \infty)$ satisfying $d_X(x, \pi(x, t_0)) < \delta$. In fact, by the property (A), we have

$$(!) \qquad \psi(x, nt_0) = \psi(\pi(x, t_0), (n-1)t_0) + \psi(x, t_0) \\ \vdots \\ \psi(x, nt_0) = n\psi(x, t_0) + \sum_{i=1}^{n-1} \{\psi(\pi(x, t_0), kt_0) - \psi(x, kt_0)\}.$$

Put $\psi(\pi(x, t_0), kt_0) - \psi(x, kt_0) = \varepsilon_k$, and $|\varepsilon_k| < 1$, because $\psi(\pi(x, t_0), kt_0) - \psi(x, kt_0) = \phi(\pi(x, t_0), kt_0) - \phi(x, kt_0)$. By (!) we obtain

$$\begin{vmatrix} \underline{\psi(x,nt_0)} \\ nt_0 \end{vmatrix} \ge \left| \frac{\psi(x,t_0)}{t_0} \right| - \frac{|\varepsilon_1| + |\varepsilon_2| + \dots + |\varepsilon_{n-1}|}{nt_0} \\ \ge \left| \frac{\psi(x,t_0)}{t_0} \right| - \frac{n-1}{nt_0} \\ \ge \frac{1}{t_0} (|\psi(x,t_0)| - 1). \end{aligned}$$

Since the left side of the above inequality tends to 0 as $n \to \infty$ by Lemma 2, we have $|\psi(x, t_0)| \leq 1$. Since π is equicontinuous, the closure $\overline{C_x(x)}$ of $C_x(x)$ is a minimal set of π ([3]). Thus there exists a relative dense subset $\{s_n\} \subset \mathbb{R}$ such that $0 < s_{n+1} - s_n \leq L$ for some L > 0 and $d_x(x, \pi(x, s_n)) < \delta$ ([4]). By the proceeding assertion, we have $|\psi(x, s_n)|$ ≤ 1 for each n. For each $t \in [0, \infty)$ we can find n such that $s_n \leq t < s_{n+1}$ and we have

$$egin{aligned} &\psi(x,t)|\!=\!\!|\psi(x,s_n\!+\!(t\!-\!s_n))| \ &=\!\!|\psi(\pi(x,s_n),t\!-\!s_n)\!+\!\psi(x,s_n)| \ &\leq\!\!|\phi(\pi(x,s_n),t\!-\!s_n)|\!+\!|lpha||t\!-\!s_n|\!+\!|\psi(x,s_n)| \ &\leq\!M_L\!+\!|lpha|L\!+\!1, \end{aligned}$$

where $M_L = \sup_{x \in X, |t| < L} \{ |\phi(x, t)| \}$. This implies that for each $x \in X$ there exists a $M_x > 0$ such that $|\psi(x, t)| \leq M_x$ for all $t \geq 0$. Further, for each $x \in X$ there exists a $\delta_x > 0$, by uniform continuity of ψ , such that $|\psi(x, t) - \psi(y, t)| < 1$ for $t \geq 0$ and $y \in X$ with $d_x(x, y) < \delta_x$. This implies, by compactness of X, that ψ is bounded on $X \times [0, \infty)$.

Proof of Theorem. Put

$$\Phi_t(x) = \frac{1}{t} \int_0^t \psi(x, s) ds \qquad (t \ge 1, x \in X).$$

Then, by Lemma 3, $\{\Phi_t\}_{t\geq 1}$ is equicontinuous and uniformly bounded. Hence, by Ascori-Alzera's theorem, there exists a sequences $\{c_n\} \subset R$ $(c_n \to \infty)$ and a continuous function $\Phi: X \to R$ such that $\Phi_{c_n} \to \Phi$ uniformly

204

as $n \rightarrow \infty$. For each *n* and $t \in R$ we have

$$\begin{split} \varPhi_{c_n}(\pi(x,t)) &= \frac{1}{c_n} \int_0^{c_n} \psi(\pi(x,t),s) ds \\ &= \frac{1}{c_n} \int_0^{c_n} \{\psi(x,t+s) - \psi(x,t)\} ds \\ &= -\psi(x,t) + \frac{1}{c_n} \int_0^{c_n} \psi(x,t+s) ds \\ &= -\psi(x,t) + \frac{1}{c_n} \int_0^{c_n} \psi(x,s) ds + \alpha_n \end{split}$$

where $\alpha_n = \frac{1}{c_n} \int_{c_n}^{c_{n+1}} \psi(x, s) ds - \frac{1}{c_n} \int_0^t \psi(x, s) ds$. Since ψ is uniformly bounded on $X \times [0, \infty)$ by Lemma 3, we have $|\alpha_n| \to 0$ as $n \to \infty$. Thus

bounded on $X \times [0, \infty)$ by Lemma 3, we have $|\alpha_n| \rightarrow 0$ as $n \rightarrow \infty$. Thus we obtain

$$\Phi(\pi(x, t)) = -\psi(x, t) + \Phi(x)$$

= $-\phi(x, t) + \alpha t + \Phi(x)$,

because $\Phi_{c_n} \rightarrow \Phi$ uniformly as $n \rightarrow \infty$.

Remark 1. In the theorem, $\alpha = \lim_{t \to \infty} \frac{\phi(x, t)}{t}$. If π is minimal, then it is known ([4]) that π is strictly ergodic. Let μ be a unique invariant measure of π . In this case, if there exists a continuous function $H: X \to R$ such that $\phi(x, t) = \int_0^t H(\pi(x, s)) ds$ for $(x, t) \in X \times R$, then we have $\alpha = \int_X H(x) d\mu(x)$.

Remark 2. In the theorem, $g_x(t) = \phi(x, t) - \alpha t$ is an almost periodic function for $x \in X$.

References

- [1] M. Bebutov et V. V. Stepanov: Sur la measure invariante dans les systèmes dynamiques que ne diffèrent que par le temps. Mat. Sbornik, 143-166 (1949).
- [2] J. Egawa: Distal minimal flows and equicontinuous minimal flows (in preparation).
- [3] R. Ellis: Lecture on Topological Dynamics, W. A. Benjamin (1969).
- [4] V. V. Nemytskii and V. V. Stepanov: Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton (1960).
- [5] J. C. Oxtoby: Ergodic sets. Bull. Amer. Math. Soc., 58, 116-136 (1952).