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53. Reparametrization and Equicontinuous Flows

By Jiro Ecawa
Faculty of General Education, Kobe University

(Communicated by Kdsaku Yosipa, M. J. A., Sept. 12, 1978)

Let X be a topological space, and R denotes the set of real num-
bers. A continuous mapping z: X x R—X is said to be a dynamical
system or a flow on (a phase space) X if = satisfies the following two
conditions :

1) =(x,0)=zx for re X,

@) #alx(z,t),s)=rn(x,t+3) forxre X and t,sec R.

C.(x) denotes the orbit of = through ¢ X. In this paper we always
assume that phase spaces of flows are compact and connected metric
spaces, and that every flow admits no singular point (x € X is called a
singular point of = if C.(x)={x}). A flow r is said to be equicontinuous
if {r;};cr forms an equicontinuous family of homeomorphism of X
onto Y, where =, is defined by r,(¥)=x(z, t) for x ¢ X. Let = and p be
flows on X and Y, respectively. A homeomorphism 7 of X onto Y is
called an isomorphism of = onto p if n(C.(x))=C,(h(x)) for xe X. In
this case, it is known ([1]) that there exists a continuous function
¢: X X R—R, which is called the reparametrization for h, satisfying
h(z(x, t))=p(M(x), $(x, 1)) for (x,t)e XX R. We can easily verify the
above reparametrization ¢ satisfies the following condition (A):

QA) ¢@,t+9)=¢x,1),s)+o,t) forxe X and t,seR.
Further, if the both flows are equicontinuous, then ¢ is uniformly
continuous on X X R ([2]). In this paper we shall show the following

Theorem. Let z be an equicontinuous flow on X, and let ¢ be a
continuous function on X X R satisfying the property (A). If ¢ is
uniformly continuous on X X R, then there exist a real number a and
a continuous function @ : X—R satisfying

o, t)=—O(x(x, t)) + O(x) +at for (z,t) e X X R.
To prove the theorem, we need several lemmas. Put F,(z)

=£¢_(f’£_tl for (z,t) e X x[1, o0).

Lemma 1. {F.};5, ts uniformly bounded and equicontinuous.
Proof. Equicontinuity of {F',} follows from the uniform continuity
of ¢. By the property (A) we have
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(@, t)= “z]: 6@, t—F), 1)+ $(@, t—[£])
for (z,t) e X x[1, c0). It follows that

|Ft(w)|§%([t]+1)M1

[t]< : ])MI_ZM,

for (x,t) e Xx[1,00), where M,= Sup {i¢(x,t)]}. Consequently,
{F';};5: is uniformly bounded. o
Lemma 2. F, converges uniformly to a constant as t—co.
Proof. At first, we shall show F', (n: integer) converges as n—oo.
Put f(@)=¢(x,1) and H(x)==(x,1) for e X, and f is continuous on
X and H is a homeomorphism of X onto X. By equicontinuity of =,

we can see that the powers {H*},_,,... of H forms an equicontinuous

family of homeomorphisms of X onto X. Thus, since for each » and
forxe X

F, (x)—-zz ¢z, n—k), 1)

-
3

=2 JH "(x))_-— ZJ SH ),

T
lim F,(x) exists for each x ¢ X ([4]). Further, we have

n—+c0

|F (%) F[c](x)| ¢ [l
_| ¢, [tD, t—[tD+ ¢, (D) _ 4(, [t])
t [t]
p(z(z, [t]), t—[t]) P, [ED ([t]
| fee =l [+ £ (1 -1))

g_ﬂgl—+F[t](x)(1—%l)—>O

as t—oo. It follows that lim F,(x) exists for each x ¢ X, and hence,

t—oo

by Lemma 1, there exists a continuous function «: X—R such that
F,—a uniformly as t—co.

Let z,¢ X be fixed, and let A={x e X; a(x)=a(x,)}. Then A is
closed, because « is continuous. Further, A is open in X. In fact,
by uniform continuity of ¢, for each z € A there exists a >0 such that
sug {|¢(z, ) —o(y, D} <1 for y € X with d(x,y)<6. For this y we have
te

|F,(w)—Ft(y)|§% for t=1, and hence, we have a(x)=a(y), i.e., y € 4.

This implies A is open in X. Since X is connected, we have A=X.
Thus a continuous function « must be a constant.
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Put ¢ (x, t)=¢(x, t) —at for (x,t) e X X R, where « is the constant
in Lemma 2.

Lemma 3. < s uniformly continuous and bounded on X X [0, co).

Proof. Uniform continuity of + follows from uniform continuity
of . Let x € X be fixed, and choose a §>0 so that |¢(z, t)—¢(y, £)|<1
for (y,t) e XX R with dx(x,y)<d. Then we can show that |y (x,t,)|
<1 for t, € [0, oo) satisfying dy(x,n(x, t,))<s. Infact, by the property
(A), we have
@P) V@, nty) = (x(x, 1), (m—Dt) +v(x, ty)

W@, 0t = (@, t) + z: (@, ), Kty — v (@, kty).

Put (z(x, ty), kty) —v(x, kt)=¢c,, and |e,|<1, because +(zx(x,t,), kt,)
— Az, kty) =¢(x(x, ty), kt) —o(x, kt)). By (!) we obtain
l (@, nt,) 2\ Y@, 80) | le|+le]+ - - - Flenal
nt, - t, nt,

g] (@, o) J_ n—1
ty nt,
g—}qm, t)|—1).

Since the left side of the above inequality tends to 0 as n—oo by
Lemma 2, we have |y (x, t,)|<1. Since z is equicontinuous, the closure
C.(x) of C.(x) is a minimal set of z ([3]). Thus there exists a relative
dense subset {s,}CR such that 0<s,,,—s,<L for some L>0 and
dy(x, n(x, 8,)) <8 ([4]). By the proceeding assertion, we have |y (zx, s,)|
<1 for each n. For each t e [0, o0) we can find n such that s, <t<s,,,
and we have
[ (@, 8) |=| (@, 8, + (E—8,)|

=]"l"(7t(x’ sn)9 t""gn) + 1?(90, sn)l

Slg(a(, 8,), t—8u) | +|a| [t —s, |+ v(, 8,)]

éML —+ lafl L + 1,
where M 1= Sup {I#(x,®)[}. This implies that for each z ¢ X there

exists a M,>0 such that [y (x, t)|<M, for all t=0. Further, for each
x ¢ X there exists a §,>>0, by uniform continuity of +, such that
[, &) —(y, t)|<1 for t=0 and y € X with dy(x, y)<d,. Thisimplies,
by compactness of X, that + is bounded on X x [0, o).

Proof of Theorem. Put

q)@):% I‘ (@, 9ds  (E=1, zeX).

Then, by Lemma 3, {@,},., is equicontinuous and uniformly bounded.
Hence, by Ascori-Alzera’s theorem, there exists a sequences {c,}CR
(¢,—0) and a continuous function @ : X— R such that @, —® uniformly
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as n—oo, For each n and ¢t € R we have

0, (x(@, 1)) =L j W@, ), 5)ds

Cn

=_CL I:» (@, t+8)—v(x, t)}ds

=@ D+ [ v t+ods
Cn Jo

=—«lf(x,t)+_]:_r” (e, )ds+a,,
Cn Jo

1
Cn

bounded on X X [0, o) by Lemma 3, we have |a,|—0 as n—oco. Thus
we obtain

where a,,:% rw Jr(x, s)ds— J.t J(x, 8)ds. Since + is uniformly
n Cn 0

=—¢(@, t) +at +D(x),
because @,,—® uniformly as n—oo.

Remark 1. In the theorem, =Ilim M If z is minimal, then

t—o0

it is known ([4]) that = is strictly ergodic. Let y be a unique invariant
measure of n. In this case, if there exists a continuous function

H:X—R such that ¢(z, t)=j° H(x(x, 8))ds for (z,t) e XX R, then we
0
have a= j H(@)du(x).
X

Remark 2. Inthe theorem, g,(t)=d¢(x, t) —at is an almost periodic
function for x ¢ X.
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