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Let X be a topological space, and R denotes the set of real num-
bers. A continuous mapping n:X R--.X is said to be a dynamical
system or a flow on (a phase space) X if u satisfies the following two
conditions"

(1) (x, 0)=x for x e X,
(2) n(n(x, t), s)--n(x, t / s) for x e X and t, s e R.

C.(x) denotes, the orbit of through x e X. In this paper we always
assume that phase spaces of flows are compact and connected metric
spaces, and that every flow admits no singular point (x e X is called a
singular point of z if C(x)--{x}). A flow is said to be equicontinuous
if {n}en forms an equicontinuous family of homeomorphism of X
onto Y, where is defined by z(x)--z(x, t) for x e X. Let and p be
flows on X and Y, respectively. A homeomorphism h of X onto Y is
called an isomorphism of z onto p if h(C.(x))--Cp(h(x)) for x e X. In
this case, it is known ([1]) that there exists a continuous function

’XR-.R, which is called the reparametrization for h, satisfying
h(n(x, t))--p(h(x), (x, t)) for (x, t) e X R. We can easily verify the
above reparametrization satisfies the following condition (A):

(A) (x, t + s)--((x, t), s)+(x, t) for x e X and t, s e R.
Further, if the both flows are equicontinuous, then is uniformly
continuous on X R ([2]). In this. paper we shall show the following

Theorem. Let z be an equicontinuous flow on X, and let be a
continuous function on XR satisfying the property (A). If q is
uniformly continuous on X R, then there exist a real number a and
a continuous function :XR satisfying

(x, t) (z(x, t)) + (x) + crt for (x, t) e X R.
To prove the theorem, we need several lemmas. Put F(x)

q(x, t) for (x, t) e X [1,
t
Lemma 1. {F}I is uniformly bounded and equicontinuous.

Proof. Equicontinuity of {F} follows from the uniform continuity
of . By the property (A) we have

(x, t)=(=(x, t--1), 1)+ (x, t--1)
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It]

(, t) ((x, t- k), ) +(x, t- It])

for (x, t) e X [1, c). It follows that

IF(x) =< -([t] + 1)M
[t] 1+ M1<2M1t

or (x, t) e X [1, c), where M= sup {l(x, t)l}. Consequently,

{Ft}t is uniformly bounded.
Lemma 2. Ft converges uniformly to a constant as t--c.
Proof. At first, we shall show F (n integer) converges as n-c.

Put f(x)=(x, 1) and H(x)==(x, 1) for x e X, and f is continuous on
X and H is a homeomorphism of X onto X. By equicontinuity of =,
we can see that the powers {H}__,.,... of H forms, an equicontinuous
family of homeomorphisms of X onto X. Thus, since for each n and
for x e X

Fn(x)-- --1 , ((x, n--k), 1)

1

_
f(H_(x))= 1 -] f(H(x))

= =o

lim F(x) exists for each x e X ([4]). Further, we have

IFt(x)--Ft(x)l= (x, t) (x, [t])
t It]

((x, [t]), t-[t])+(x, [t]) (x, [t]).
t [tl

((x, It]), t- It])
[t] \ t

as t-oo. It follows that lim Ft(x) exists for each x e X, and hence,

by Lemma 1, there exists a continuous function a" X-R such that

Ft-*a uniformly as tc.
Let x0 e X be fixed, and let A={x e X; a(x)=a(x0)}. Then A is

closed, because a is continuous,. Further, A is open in X. In fact,
by uniform continuity of , for each x e A there exists a )0 such that
sup {[(x, t)--(y, t)[}__<l for y e X with dx(x, y)<a. For this y we have

IFt(x)--Ft(y)]< 1 for t>l, and hence, we have a(x)=a(y), e y e A

This implies A is open in X. Since X is connected, we have A=X.
Thus a continuous function a must be constant.
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Put (x, t)--(x, t)--at for (x, t) e Xx R, where a is the constant
in Lemma 2.

Lemma 3. is uniformly continuous and bounded on Xx [0, oo).
Proof. Uniform continuity of follows from uniform continuity

of . Let x e X be fixed, and choose a/0 so that I(x, t)--(y, t)l< 1
for (y,t)eX><R with dz(x,y)6. Then we can show that
__<1 for to e [0, co) satisfying dz(x, =(x, t0))</. In fact, by the property
(A), we have
( ) 4x(x, nto)--((x, to), (n--1)t0)+ (x, to)

4x(x, nto)=n4x(x, to)+ , {(z(x, to), kto)--(x, kt0)}.

Put (u(x, t0),kt0)--(x, kt0)=, and lell, because ((x, t0), kto)
--4x(x, kto)--((x, to), kto)--(x, kto). By (!) we obtain

4z(x, nto) >= (X, to) lel]+lel+""
nto to nto

>_ (x, to) n- 1
to nto

>--1( (x, t0) l-- 1).
to

Since the left side of the above inequality tends to 0 as n-+oo by
Lemma 2, we have I@(x, to)i_-<l. Since is equicontinuous, the closure
C,(x) of C.(x) is a minimal set of ([3]). Thus there exists a relative
dense subset {s,}cR such that Os,/--s,<L for some L>0 and
dx(x, (x, s,))a ([4]). By the proceeding assertion, we have I(x, s,)]
<1 for each n. For each t e [0, c) we can find n such that s,<=ts,+l
and we have

I(x, t) l--I(x, s= / (t- s=))l
((x, s), t--s) + (x, s)l

gM+lal L+I,
where M= sup {l(x,t)l}. This implies that for each x e X there

zX, ltl<L

exists M>O such that I+(, )I_-<M for II _>_0. Further, for ech
x e X there exists a />0, by uniform continuity of , such that
I(x, t)--9(y, t)l<l for t0 and y e X with dx(x, y)</. This implies,
by compactness of X, that 4x is bounded on Xx [0, oo).

Proof of Theorem. Put

() - ,(, )ge (t >= 1, x e X).

Then, by I_,emma , {} is equieontinuous and uniformly bounded.
I-Ienee, by Aseori-Alera’s theorem, there exists a sequences {e,}R
(e,c) and a continuous function " XR such that --, uniformly
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as n-*.

where an-----

bounded onX [0, c) by Lerama 3, we have levi-*0 as n-.c.
we obtain

((x, t))=-(x, t)+ (x)
-(x, t) +t+(x),

because- uniformly as n--.c.

Remark 1. In the theorem, a=lim (x, t).

For each n and t e R we have

Cn

Vn

Cn

--(, t) +1 (, e)ge+,
(,)de-- (w, e)ge. Since is uniformly

Cn oe Cn
Thus

If is minimal, then

it is known ([4]) that z is strictly ergodic. Let g be a unique invariant
measure of . In this case, if there exists a continuous function

H" X-R such that (x, t)=.[o H((x, s))ds for (x, t) e X R, then we

have =x H(x)dp(x).

Remark 2. In the theorem, g(t)=(x, t)--at is an almost periodic
function for x e X.
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