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1. Introduction. Let {X(t,o); 0<t<l, we9} be a real valued
separable stochastic process defined on a probability space (tO, , P).
We concern a best possible integral test for sample continuity of all
processes belonging to an indicated class. For this aim, we define for
p_l,

S--a collection of all separable stochastic processes {X(t, w);
0<_ _<1, e tg} up to equivalent class such that

(E[[X(t)l])/=liX(t)ll< + c or all
Z=a collection of all continuous function on [0, 1] which are

non-negative, non-decreasing and zero at the origin,
and for a e X

S()={{X(t)} e S, IIx(t)-x(s)il<_(It-sl)}.
Then the ollowing integral test for sample continuity of all

processes belonging to S(a) is known ([1]).
Theorem Ao If

I(a)=+0 h-(+/)a(h)dh< + c
then all processes belonging to S(a) have continuous sample paths
with probability 1.

The converse statement is not true in general, but Hahn-Klass
[2] have proved the following theorem using a rearrangement of a in
case of p--2.

Set e(h) inf ya(h/y).

Theorem B. All processes belonging to S(a) have continuous
sample paths with probability 1 if and only if I() converges.

In this paper, we establish some relation concerning about and
extend Theorem B to p_>2 by just the analogous method as them.

2. Set
,(h) sup sup

{X(t)}S(a) Os
OKtKt+sK1

and
a*(h)=the largest sub-additive minorant of a,

that is, a* is characterized by the following"
(i) a*eX,
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(ii)
(iii) a*(s / t) <_a*(s) / a*(t),
(iv) if a’ satisfies (i), (ii) and (iii), then a’_<a*.
Lemma 1. a*--a,.
In fact, obviously we have a,<_a and a. e 27. By the triangular

inequality and the definition of a,, a, satisfies (iii) which implies a,
_<a* by (iv). Conversely, choose an arbitral random variable X such
that IIXII--I and set X(t)--a*(t)X, then

Therefore we have {X(t)} e S(a) and it follows from the definition of
a, that

a*(t) X(t) --X(o) I[ <--a,(t). Q.E.D.
Lemma 2. Hahn-Klass’ function e has the following properties"
( i ) O<_<a,
(ii)
(ii) xe(1/x) is continuous, non-decreasing on [1, +),
(iv) a is sub-additive,
(v) <_a*=.<_2.
Proof. In case of p=2, the properties (i)-(iii) have been proved

in [2], and one can easily apply their proofs to the general case. To
prove (iv), assume h>_ h’_>0 and h+ h’_<l, then it follows by (iii) that

a(h + h’) / (h + h’) <_a(h) / h,
and again by (iii) we have

a(h+ h’) <_(h) + h’e(h) /h <_a(h) + a(h’).
The first inequality of (v) follows from sub-additivity of and the
definition of a*. For the second inequality of (v), we notice that

llZ(h)--Z(o)ll<_ , I]Z(kh/n)--X((k--1)h/n)ll<_na(h/n), n--l,2, ....
Therefore for any y with n_<y<n+ 1, it follows that

ya(h/y) >_ na(h/(n+ 1)) _> (n+ 1)a(h/(n+ 1))/2_> X(h) X(o)II/2
holds for any {X(t)} e S(a), which yields 2_>a,.

3. Now we establish an extension of Theorem B.
Theorem. When 79>_2, all processes belonging to S(a) have con-

tinuous sample paths with probability 1 if and only if one of the fol-
lowing three conditions is fulfilled"

( ) I()< +co,
(ii) I(a*) < +
(iii) I(a,) < + o.

Remark. One can easily construct n example such that I()
< + co but I(a)= + oo by the same way as that of [2], who have given
such example in ease of p=2.

For the proof of Theorem, it is sufficient by virtue of Theorem
A and Lemma 2 that we construct a stochastic process {X(t)} belonging
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to S() which does not have continuous sample paths with probability
1 under the condition I()--- +. For this aim, we will modify the
proof of [2]. First we need several lemmas.

Lemma 3 ([4, p. 129]). Let {a} be a non-negative, non-increasing
sequence with lira a--O. Then a Fourier cosine series

g(x) , a, cos 2unx, x e [0, 1]
n----1

converges uniformly on any compact subset of the open interval (0, 1).
Moreover, for pl, g(x) belongs to L[0,1] (with respect to the
Lebesgue measure) if and only if, an- +.

Lemma 4 ([4, p. 109]). Let (c};_o. be complex numbers such
that , Icl (In]+ 1)- converges for p>_2. Then, there exists an f in
L[O, 1] such that

c-- f(x)e-’dx,

and

where, A is a constant independent of f or {c}.
Lemma 5. If Iv(e)--+oo (pl), then xe(1/x) $ +oo as x T +oo.
Lemma 6. If I()-- + oo (p 1), then there exists a non-negative

random variable Y such that
(i) for any

[[Y/ky]_6ye(1/y)/a(1), (a/h b--min (a,b))

(ii) P(Y>y)/vyZv-d +
Outline of the proof. Analogously as that of [.], set

to=l, t=sup {x; xe(1/x) <_.’e(1)},
then there exists a random variable Y sueh that

a) (Y>t)=(./t),=(e(1/t)/e()),,
b) p(Y>y)=p(Y>t+I) tor .t<_v<t/,

and
(>) (Y> t,)(.t, ) /t+(>t/)( t) / t,

for
It is easy to cheek (i) and (ii)

Lemma 7. Let {, =1, ., .} be o-egtie eeqeee d
et for > 1,

Then there exist positive constants B and
such that
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(i) gn/->_B , a,
=i n=l

(ii) if a is non-increasing,, gnv- <_C an (Boas’ inequality).
n=l

In case of p----2, one can find a proof in [3]. Lemma 7 is also proved
analogously.

Lemma 8. Set b,=P(Y>n)1/, (p>_2) for the random variable
Y in Lemma 6. Then there exists a rearrangement of b. such that

(i) 5<_b,
(ii) a----(--5+)VnZ- is positive, non-increasing,

(iii) , .nV-= + co,

(iv)

(v) , ak-+] ak-<_E[(YA])].
=i >j

In fact, b is defined as the largest convex minorant of b, then
all conditions (i)-(v) are fulfilled by Lemmas 6 and 7, (ii).

Proof of Theorem. We choose {a, n=l, 2, ...} in Lemma 8 and
set

X(t, x) Dg(x t) D a. cos 2=n(x t),
=1

D=(1) /(A=. 3.2-v).
Then, {X(t, x) 0<t<1} is a stochastic process on the probability space
([0, 1], dx) and belongs to S by the definition of {a} and by Lemma 3.

Since we have

c =.[: (X(t + h)x)--X(t, x))e-dx

Dal,(e-(t/)-- e-’t)/2,
it follows by Lemmas 4 and 8, (v) that for 1/]h1/(i--1),

E[IX(t + h) X(t) I*]v*

A Ic.I (lnl+

nhN1 nh>
2-vzAD(E[(YA])])v/]
3.2-v=ADe(1/]) /

e(h)ia(h).
Therefore {X(t)} belongs to S(a), having discontinuous (unbounded)

sample paths with probability 1 because of a= + by Lemma 8,
=1

(iv).
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