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§ 1. Introduction. Let {X({,0); 0<t<1, w € 2} be a real valued
separable stochastic process defined on a probability space (2, ¥, P).
We concern a best possible integral test for. sample continuity of all
processes belonging to an indicated class. For this aim, we define for
p>1,

S,=a collection of all separable stochastic processes {X(¢,w);

0<t<1, w e 2} up to equivalent class such that
EXOPD*=X®)|,<+ oo for all 0<t<1,
2 =a collection of all continuous function on [0, 1] which are
non-negative, non-decreasing and zero at the origin,
and foroe
S,@={{X®)} € S,; |X®)—X ()|, <ot —sD}.

Then the following integral test for sample continuity of all
processes belonging to S,(¢) is known ([1D).

Theorem A. If

I,,(a)=j =0+ P(h)dh < + oo,
+0

then all processes belonging to S,(¢) have continuous sample paths
with probability 1.
The converse statement is not true in general, but Hahn-Klass
[2] have proved the following theorem using a rearrangement of ¢ in
case of p=2.
Set a(h) =i1§ yo(h/y).
Yy

Theorem B. All processes belonging to S,(¢) have continuous
sample paths with probability 1 if and only if 1,(G) converges.
In this paper, we establish some relation concerning about & and
extend Theorem B to p>2 by just the analogous method as them.
§2. Set
o (k)= sup  sup [ XE+8)—X®),

{X ()} eSpla) 0<s<h
0<t<t+s<1

and
o*(h) =the largest sub-additive minorant of o,
that is, ¢* is characterized by the following :
(i) o*el,
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(ii) o¢*<o,

(i) o*(s+t)<a*(8)+a*(D),

(iv) if ¢’ satisfies (i), (i) and (iii), then ¢’ <o*.

Lemma 1. ¢*=g,.

In fact, obviously we have ¢,<o and o, €. By the triangular
inequality and the definition of o,, s, satisfies (iii) which implies o,
<o¢* by (iv). Conversely, choose an arbitral random variable X such
that | X||,=1 and set X(t)=0*()X, then

1 X@) =X, <le*@)—a*(s)|<o*(t—s)<o(t—s).
Therefore we have {X(¢)} € S,(¢s) and it follows from the definition of
o4 that

c* )= X®)—X(0)|,<a,@). Q.E.D.
Lemma 2. Hahn-Klass’ function @ has the following properties :
(i) 0<a<o,
(ii) oel,

(iii) a7(1/x) is continuous, non-decreasing on [1, + co),

(iv) & is sub-additive,

(v) o<o*=0,<20.

Proof. In case of p=2, the properties (i)-(iii) have been proved
in [2], and one can easily apply their proofs to the general case. To
prove (iv), assume h>h'>0 and h+h’'<1, then it follows by (iii) that

a(h+h)/(h+h)<a(h)/h,
and again by (iii) we have
a(h+n)<a(h)+h'a(h) | h<a(h)+a(h’).
The first inequality of (v) follows from sub-additivity of & and the
definition of ¢*. For the second inequality of (v), we notice that
||X(h)——X(o)Hp£kZ_]1IIX(kh/n)~X((k—1)h/n)|]p3na(h/n), n=1,2, ...
Therefore for any ¥y with n<y<n-41, it follows that

yo(h/y) =no(h/(n+1) >+ Do(h/(n+1))/2>|| X(h)—X(0)|,/2
holds for any {X(¢)} € S,(¢), which yields 26 >g,.

§3. Now we establish an extension of Theorem B.

Theorem. When p>2, all processes belonging to S,(¢) have con-
tinuous sample paths with probability 1 if and only if one of the fol-
lowing three conditions is fulfilled :

(i) I,@<+oo,

(ii) I, (e*) <+ oo,

(i) Iy (o0) <+ oo.

Remark. One can easily construct an example such that I,(@)
< 4o but I,(¢)=+ co by the same way as that of [2], who have given
such example in case of p=2.

For the proof of Theorem, it is sufficient by virtue of Theorem
A and Lemma 2 that we construct a stochastic process {X(¢)} belonging
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to S,(¢) which does not have continuous sample paths with probability
1 under the condition I,(@)=+ . For this aim, we will modify the
proof of [2]. First we need several lemmas.

Lemma 3 ([4, p. 129]). Let {a,} be a non-negative, non-increasing
sequence with lim a,=0. Then a Fourier cosine series

N—> 00

g(ac):Z.j]1 a, COS 2nnx, x e[0,1]

converges uniformly on any compact subset of the open interval (0,1).
Moreover, for p>1, g(x) belongs to L,[0,1] (with respect to the
Lebesgue measure) if and only if

i afn?~2< 4 co.

n=1
Lemma 4 ([4, p. 109]). Let {c,};-_.. be complex numbers such
that > |c, P (n|+1)P~% converges for p>2. Then, there exists an f in
L?[0, 1] such that

cu=|, F@)e e,
0
and

1 1/p o 1/p
([1r@p an)” <a,(S1ear (ni+17) ",
where, A, 18 a constant independent of f or {c,}.
Lemma 5. If I1,(@)=+co (p>1), then 25(1/x) | + o0 a8 £ T +oco.
Lemma 6. If I,(@)=+co (p>1), then there exists a non-negative
random variable Y such that
(i) foranyy>1
I YAy |,<6ys(1/y)/a(1), (e Ab=min (a,b))

(ii) j” P(Y > y)/2y=\dy = + oo.

QOutline of the proof. Analogously as that of [2], set
t,=1, t,=sup {x; xa(1/x) <2"5(1)},

then there exists a random variable Y such that

a) p(Y>t,)=@2"/t,)?=(@(1/t,)/a(1))?,

b) p(Y>y)=p(Y>tn+1) for 2tn.<_y<tn+1,
and
for t,<y<2t,.
It is easy to check (i) and (ii) for the above Y.

Lemma 7. Let {a,, n=1,2,--.} be a non-negative sequence and
set for p>1,

o=, agk?~,
k=n

Then there exist positive constants B, and C, depending only on p
such that



200 N. KonNo [Vol. 54(A),

(1) 3 9.m1>B, 3 a,
n=1 n=1

(ii) if a, is non-increasing,

oo

> 9P <G, fi a, (Boas’ inequality).
n=1

n=1

In case of p=2, one can find a proof in [3]. Lemma 7 is also proved
analogously.

Lemma 8. Set b,=P(Y>n)"?, (p>2) for the random variable
Y in Lemma 6. Then there exists a rearrangement b, of b, such that

(i) 0,<b,,

(il)  a,=(b2—bz, )V*n¥?"" i positive, non-increasing,

Gil) 3 b7 =+ oo,

Av) 3 a,=+oo,

(V) 3 apkrtgr 3 azkr < EL(Y AJ.

k=1 k>j

In fact, b? is defined as the largest convex minorant of b2, then
all conditions (i)-(v) are fulfilled by Lemmas 6 and 7, (ii).

Proof of Theorem. We choose {a,; n=1,2, .-} in Lemma 8 and
set

X(t,x)=D,g(@—t)=D, Y. a, cos 2zn(x—1),
n=1
and
D,=51)/(A,n-3-2¢17),

Then, {X(t, ) ; 0<t <1} is a stochastic process on the probability space
([0, 11, dx) and belongs to S, by the definition of {a,} and by Lemma 3.

Since we have

c,,=f (X(t+h)2) — X (¢, ¥)e " nsda
0

____Dpa'nl(e—zrln(t"'h)__e—innt)/z,
it follows by Lemmas 4 and 8, (v) that for 1/j<h<1/(i—1),
E[X(t+h)—X(t)[P]?

SA”(ni leal? (m|+ 1)p—2)1/p

gApDP(n”ZP‘lhf’ ST ety 2oty agnv-z)"”
nh<1l nh>1

<2YrrA D (EI(Y AND*DV?/j

<38.2%V2zA D ,a(1/7) /)

<a(h)<o(h).
Therefore {X(t)} belongs to S,(¢), having discontinuous (unbounded)
sample paths with probability 1 because of Z”; 0,=-+oco by Lemma 8,

n=1

@1v).
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