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51. On Some Unilateral Problem of Elliptic
and Parabolic Type

By Hiroki TANABE
Department of Mathematics, Osaka University

(Communicated by Kdsaku Yo0SIDA, M. J. A., Sept. 12, 1978)

In this note we establish some regularity result for the parabolic
unilateral problem
ou/ot+Luz=f, u=v,
(Ou/dt+ Lu— f)(u—¥)=0
as well as some related result for the associated elliptic problem.
Let 2 be a not necessarily bounded domain of R* with smooth
boundary I". Let
Yy ou v Y ou
aw, v)= I . (g:;l U et B Vg, 'v+cuv)dx
be a bilinear form defined on the space H'(Q)x H'(2) of real valued
functions with real coefficients a,; € B'(2), a, € B'(2), ¢ € L*(2), where
B'(2) is the set of functions continuous and bounded in 2 together
with first derivatives. Assume that the matrix {a,,(®)} is uniformly
positive definite in 2 and there exists a positive number « such that

N
cza, c—,0b;/ox, =z a.e.
i=1
Let

L=— ﬁ: —Q—(au 0 >+£ b, 9 +c
“j=1 0w, 0%, =1 owy

be the differential operator associated with the bilinear form a(u, v).
For 1<p=oco we denote by L, the realization of L in L?(22) under the
Dirichlet boundary condition (refer to [2] or [6] for this subject where
2 is assumed to be bounded). Let ¥ be a function defined in 2.

¥.1) For some p, 1<p<oo, ¥ ¢ W>?(2) and ¥|.=0.

w.2) ¥eW-(2), LV ¢ L\(Q) and ¥|,<0.
By M, we denote the multivalued mapping defined by

DM ,)={ueL*(Q): u=¥ a.e. in 2},

Mu={geL?(2): g<0 a.e. in 2, g(x)=0 where u(x) > ¥ (x)}.
When the assumption (Z.1) is satisfied, we define the operator A, by
A,=L,+M,; when the assumption (¥.2) as well as (¥.1) for some
1<p<oo is satisfied, we define the operator A, by A,=L,+ M,.

Proposition 1. A, and A, are m-accretive in L*(2) and L'(2)
respectively and
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DA ,)={uecL?(Q): u=¥ a.e. in 2},
DA)={ueL'(Q): u=¥ a.e. in 2}.

By G(A) we denote the graph of the mapping A.

Theorem 1. (i) Suppose that (¥.1) is satisfied for some p with
1<p<co. Then, for any q with p<q=Np/(N—2p) the operator A,
defined by

G(Ap)=the closure of G(A,) N(LU) X LU Q) in L)X LY (L) (1)
18 m-accretive in LYRQ) and

D(A)={ueLYQ): u=¥ a.e. in 2}. (2)

(ii)) Swuppose that (F.2) as well as (¥.1) for some p with 1<p<co
is satisfied. Then for any 1<q<p the operator A, defined by (1) is
m-accretive in L) and (2) holds.

Outline of the proof. If feL?(Q)NLY2), then u=U+A,)7'f is
the limit of the solution of the approximate equation

w4+ Lyu,+ (u,— Puy) [2=f,
where P is the operator defined by Pw=max {w,?}. Since f e Li(Q)
this equation may be written as

. U+ L, + (w,— Pu) /2= f. )

Similarly, if f is another element of L?(2) N L(2), #=(1+A,)7'f is the
limit of the solution of

W4 Lty + (i, — Piy) | A=F.
Since L, and (I—P)/2 are both accretive in L(2) we get |u,—%,]|,
<||f—/l, Going to the limit we obtain |u—|,<||f—f|, which
plays the fundamental role in the proof of the theorem.

By Theorem 1 the m-accretive operator 4, is defined and (2) holds
for all ¢ with 1<q<Np/(N—2p) if the assumptions (¥'.1) and (Z.2)
are satisfied.

In what follows we assume that (¥".1) and (¥.2) are satisfied for
some p satisfying 1<p<2 and p*=@®'—N")"'=2. In this case
25 (N—-2)p/(N—2p)'<Np/(N—2p), hence by Theorem 1 the operator
A, is defined and m-accretive in L*£2). Furthermore, by Sobolev’s
imbedding theorem ¥ belongs to H'(2).

Let ¢ be the functional on L*(Q) defined by

1 ou ou « ) s 1
)= E.[m-, x1a“-aza—xj-dx+aj‘audx if ¥<ue HyQ),
) otherwise,

and B=§ﬁ b,0/0x;+ c—a be the differential operator defined on Hi(Q).
i=1

M=

~,

Proposition 2. A,=0d¢+ B.
Next, we consider the semilinear parabolic equation
du(t)/dt + Au®) s f(¢t), 0<t<T, (3)
#(0) =u,. (4)
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According to [4] we consider the solution of (3)-(4) constructed by

u(t)=lim || {I +1(A,,— f(it))}"luo. (5)
n—oo g=1 n n
Theorem 2. If for some q with 1<9<2 ¥<u,e LU2) and
feWwr0,T; L« NL(2)), then the function constructed by (5) is
differentiable in L™(2) for any r=2 and satisfies the equation
du(t) | dt +0¢(u(t)) + Bu(t) > f(t) a.e. in (0, T).
There exists a constant C depending on q and r such that
| du(t)/dt||,

=CA+V ORI |+ [0+ @)+ ¢ | Bo,
ot 8 1D |+ [ 1@ ds)

+ct* [ lase)/dslh ds+ | |47 (s)/ds]) ds

for any v e D(@) where B=N@r'—2)/2, y=N@'—q™)/2, 6=N(p~!
—2)/2 and || ||, denotes the norm of L™(£2).
Similar results remain valid for more general boundary condition
—ou/ov(x) e p(w, u(x)) on I'x(0, T),
where g(x, r) is maximal monotone in R X R for any x e I.
In the proof of the results stated above essential use is made of
the methods of [1], [3], and [6].
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