48. On the Normal Generation by a Line Bundle on an Abelian Variety

By Tsutomu Sekiguchi
Department of Mathematics, Chuo University
(Communicated by Kunihiko Kodaira, M. J. A., Sept. 12, 1978)

Let k be an algebraically closed field of characteristic $p \geqq 0, X$ an abelian variety over k, and L an ample invertible sheaf on X. In the previous paper [7], the author proved, unfortunately providing $p \neq 2,3$, that the embedded variety of X into the projective space $\boldsymbol{P}\left(\Gamma\left(L^{3}\right)\right)$ by means of the global sections of L^{3}, is ideal-theoretically an intersection of cubics. But he has recently found that the method in it can be extended for $p=2$. Namely, it can be checked easily even for $p=2$ that the canonical map $\Gamma\left(L^{2} \otimes P_{\alpha}\right) \otimes \Gamma\left(L^{2} \otimes P_{-\alpha}\right) \rightarrow \Gamma\left(L^{4}\right)$ is surjective for almost all α in \hat{X}, and which was the only obstacle to the proof of the fact for $p=2$ in [7]. Moreover, as mentioned in [7], the surjectivity of the canonical maps lead us easily to the main results given in [1], [5] and [6].

We start with the following Mumford's theta structure theorem.
Theorem (Mumford's theta structure theorem). Let M be a nondegenerate invertible sheaf on X of index i, and

$$
1 \longrightarrow \boldsymbol{G}_{m} \longrightarrow \mathcal{G}(M) \xrightarrow{j(M)} K(M) \longrightarrow 0
$$

the theta group scheme of M, where $K(M)$ is the scheme-theoretic kernel of the homomorphism $\phi_{M}: X \rightarrow \hat{X}$ defined by $x \mapsto T_{x}^{*} M \otimes M^{-1}$. Then the canonical action U of $\mathcal{G}(M)$ on $H^{i}(M)=H^{i}(X, M)$ is the unique irreducible representation of $\mathcal{G}(M)$, with \boldsymbol{G}_{m} acting naturally (cf. Appendix to [6]).

Corollary. Under the same notation as in above, let V and W be two subspaces of $H^{i}(M)$ with $V \supset W \neq\{0\}$. Assume that for any local ring (B, \mathfrak{M}) over k with the residue field k and any B-valued point λ of $\mathcal{G}(M), U_{\lambda}(W \otimes B) \subset V \otimes B$. Then we have $V=H^{i}(M)$.

Proof. Let $R=\Gamma\left(\underline{G}(M), \mathcal{O}_{\mathcal{G}(M)}\right)$, and $\sigma: H^{i}(M) \rightarrow H^{i}(M) \otimes R$ be the co-module structure corresponding to the action U. We denote by γ the composition :

$$
H^{i}(M) \otimes R^{*} \xrightarrow{\sigma \otimes 1_{R^{*}}} H^{i}(M) \otimes R \otimes R^{*} \xrightarrow{\left.1_{H^{t}(M)} \otimes<\right\rangle} H^{i}(M),
$$

where $R^{*}=\operatorname{Hom}_{k}(R, k)$ and \rangle stands for "contraction". Here we put $\bar{W}=\gamma\left(W \otimes R^{*}\right)$. Then obviously $\{o\} \neq W \subset \bar{W} \subset V$ and \bar{W} becomes a stable subspace under the action U. Hence, by Mumford's theta structure theorem, we have $\bar{W}=V=H^{i}(M)$.
Q.E.D.

The following is the main result in this paper, and which is a generalization of Proposition 1.5 in [7] for any characteristic.

Main theorem. Let L be any ample invertible sheaf on X. Then for any α, β in \hat{X}, if we take a point γ of \hat{X} in general position, $\Gamma\left(L^{2} \otimes P_{\alpha+\gamma}\right) \otimes \Gamma\left(L^{2} \otimes P_{\beta-\gamma}\right) \rightarrow \Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right)$
is surjective, where P is the Poincaré invertible sheaf on $X \times \hat{X}$ and $P_{\hat{x}}=\left.P\right|_{X \times\{\hat{x}\}}$ for any point $\hat{x} \in \hat{X}$.

Proof. If necessary, slightly modifying α and β, we may assume that L is symmetric. Let $\xi: X \times X \rightarrow X \times X$ be the homomorphism defined by $(x, y) \mapsto(x-y, x+y)$. Then we have an isomorphism

$$
\xi^{*}\left(p_{1}^{*}\left(L^{2} \otimes P_{\alpha}\right) \otimes p_{2}^{*}\left(L^{2} \otimes P_{\beta}\right)\right) \xrightarrow{\sim} p_{1}^{*}\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes p_{2}^{*}\left(L^{4} \otimes P_{\beta-\alpha}\right)
$$

where $p_{i}: X \times X \rightarrow X$ is the projection to the i-th component for each $i=1,2$. This isomorphism defines a lifting of the group $K=\operatorname{ker}(\xi)$:

where $j=j\left(p_{1}^{*}\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes p_{2}^{*}\left(L^{4} \otimes P_{\beta-\alpha}\right)\right) . \quad$ Moreover, by the descent theory, passing through $\xi^{*}, \Gamma\left(L^{2} \otimes P_{\alpha}\right) \otimes \Gamma\left(L^{2} \otimes P_{\beta}\right)$ is isomorphic to the K^{*}-invariant subspace $\left(\Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes \Gamma\left(L^{4} \otimes P_{\beta-\alpha}\right)\right)^{K^{*}}$ of $\quad \Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right)$ $\otimes \Gamma\left(L^{4} \otimes P_{\beta-\alpha}\right)$. If we denote by G^{*} the centralizer of K^{*}, then we have a canonical exact sequence:

$$
1 \longrightarrow K^{*} \longrightarrow \mathcal{G} * \xrightarrow{\mathcal{G}(\xi)} \mathcal{G}\left(p_{1}^{*}\left(L^{2} \otimes P_{\alpha}\right) \otimes p_{2}^{*}\left(L^{2} \otimes P_{\beta}\right)\right) \longrightarrow 0,
$$

and a commutative diagram

$$
\begin{align*}
& \left(\Gamma\left(L^{2} \otimes P_{\alpha}\right) \otimes B\right) \otimes_{B}\left(\Gamma\left(L^{2} \otimes P_{\beta}\right) \otimes B\right) \\
& \quad U_{\sigma(\xi)(\mu)} \downarrow \\
& \left(\Gamma\left(L^{2} \otimes P_{\alpha}\right) \otimes B\right) \otimes_{B}\left(\Gamma\left(L^{2} \otimes P_{\beta}\right) \otimes B\right) \tag{1}\\
& \xrightarrow{B \otimes \xi^{*}}\left(\Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes B\right) \otimes_{B}\left(\Gamma\left(L^{4} \otimes P_{\beta-\alpha}\right) \otimes B\right) \\
& \quad \xrightarrow{B \otimes \xi^{*}}\left(\Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes B\right) \otimes_{B}\left(\Gamma\left(L^{4} \otimes P_{\beta-\alpha}\right) \otimes B\right)
\end{align*}
$$

for any k-algebra B and any B-valued point μ of $\mathcal{G}\left(p_{1}^{*}\left(L^{4} \otimes P_{\alpha+\beta}\right)\right.$ $\otimes p_{2}^{*}\left(L^{4} \otimes P_{\beta-\alpha}\right)$. For any integer n, we put $X_{n}=\{x \in X \mid n x=0\}$. Since $X_{2} \times X_{2}$ is isotropic in $K\left(p_{1}^{*}\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes p_{2}^{*}\left(L^{4} \otimes P_{\beta-\alpha}\right)\right)$ and contains K, we can lift $X_{2} \times X_{2}$ up to a level subgroup $\left(X_{2} \times X_{2}\right)^{*}$ containing K^{*}. Moreover, obviously there exist level subgroups $X_{2}^{*} \subset \mathcal{G}\left(L^{4} \otimes P_{\alpha+\beta}\right)$ and $X_{2}^{* *} \subset \mathcal{G}\left(L^{4} \otimes P_{\beta-\alpha}\right)$ such that $X_{2}^{*} \times X_{2}^{* *}$ is isomorphic to $\left(X_{2} \times X_{2}\right)^{*}$ passing through the canonical homomorphism $\pi: \mathcal{G}\left(L^{4} \otimes P_{\alpha+\beta}\right) \times \mathcal{G}\left(L^{4} \otimes P_{\beta-\alpha}\right)$ $\rightarrow \mathcal{G}\left(p_{1}^{*}\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes p_{2}^{*}\left(L^{4} \otimes P_{\beta-\alpha}\right)\right)$. Here we take non-trivial sections $\theta \in \Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right)^{X_{2}^{*}}$ and $\theta^{\prime} \in \Gamma\left(L^{4} \otimes P_{\beta-\alpha}\right)^{X_{2}^{* *}}$. Then, since $X_{2}^{*} \times X_{2}^{* *} \simeq\left(X_{2}\right.$ $\left.\times X_{2}\right)^{*} \supset K^{*}, \theta \otimes \theta^{\prime} \in\left(\Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes \Gamma\left(L^{4} \otimes P_{\beta-\alpha}\right)\right)^{K^{*}}$, i.e., there exists an element Θ in $\Gamma\left(L^{2} \otimes P_{\alpha}\right) \otimes \Gamma\left(L^{2} \otimes P_{\beta}\right)$ such that $\xi^{*} \Theta=\theta \otimes \theta^{\prime}$. Now we choose a point $y_{0} \in X$ satisfying the condition.
(2) $\quad \theta^{\prime}\left(y_{0}+x\right) \neq 0 \quad$ for any k-valued point x of $K\left(L^{4} \otimes P_{\beta-\alpha}\right)$, and we put $\gamma=-2 \phi_{L}\left(y_{0}\right)$. Then, since the diagram

commutes, we have a commutative diagram

$$
\begin{gather*}
\Gamma\left(L^{2} \otimes P_{\alpha+\gamma}\right) \otimes \Gamma\left(L^{2} \otimes P_{\beta-\gamma}\right) \xrightarrow{\Delta^{*}} \Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right) \tag{3}\\
\Gamma\left(T_{-y_{0}}^{*} 0^{2} \otimes P_{\alpha}\right) \otimes \Gamma\left(T_{y_{0}}^{*} L^{2} \otimes P_{\beta}\right) \\
T_{y_{0}}^{*} \otimes T_{y_{0}}^{*} \uparrow \\
\Gamma\left(L^{2} \otimes P_{\alpha}\right) \otimes \Gamma\left(L^{2} \otimes P_{\beta}\right) \xrightarrow{\xi^{*}} \Gamma\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes \Gamma\left(L^{4} \otimes P_{\beta-\alpha}^{*}\right) .
\end{gather*}
$$

Therefore, if we put $V=\operatorname{Im}\left[\tau=\Delta^{*}: \Gamma\left(L^{2} \otimes P_{\alpha+\gamma}\right) \otimes \Gamma\left(L^{2} \otimes P_{\beta-\gamma}\right) \rightarrow \Gamma\left(L^{4}\right.\right.$ $\left.\left.\otimes P_{\alpha+\beta}\right)\right]$, it contains the subspace W spanned by only one element θ. Hence, by virtue of Corollary to Mumford's theta structure theorem, we have only to show that
for any local ring (B, \mathfrak{M}) over k with the residue field k
land any B-valued point λ of $\mathcal{G}\left(L^{4} \otimes P_{\alpha+\beta}\right), U_{\lambda}(W \otimes B) \subset V \otimes B$.
So, let (B, \mathfrak{M}) be such a local ring, and λ be such a point of $\mathcal{G}\left(L^{4} \otimes P_{\alpha+\beta}\right)$. We choose a B-valued point λ^{\prime} of $\mathcal{G}\left(L^{4} \otimes P_{\beta-\alpha}\right)$ such that $j\left(L^{4} \otimes P_{\beta-\alpha}\right)\left(\lambda^{\prime}\right)$ $=j\left(L^{4} \otimes P_{\alpha+\beta}\right)(\lambda)$. Since $\quad \Delta\left(K\left(L^{4}\right)\right) \subset K\left(p_{1}^{*}\left(L^{4} \otimes P_{\alpha+\beta}\right) \otimes p_{2}^{*}\left(L^{4} \otimes P_{\beta-\alpha}\right)\right) \quad$ and $j^{-1}\left(\Delta\left(K\left(L^{4}\right)\right) \subset \mathcal{G}^{*}, \pi\left(\lambda, \lambda^{\prime}\right) \in \mathcal{G}^{*}\right.$. Therefore, by commutativity of (1), we have

$$
U_{\lambda} \theta \otimes U_{\lambda^{\prime}} \theta^{\prime}=\left(\xi^{*} \otimes B\right)\left(U_{G(\xi) \pi\left(\lambda, \lambda^{\prime}\right)} \Theta\right) .
$$

Here we put $S=\operatorname{Spec}(B), \iota: \operatorname{Spec}(B / \mathfrak{M}) \rightarrow S$ the closed point, $X_{S}=X \times S$, $L_{S}=L \otimes B$ and $y_{0}^{\prime}=y_{0} \times 1_{S}: \operatorname{Spec}(k) \times S=S \rightarrow X \times S$. Then we have commutative diagrams

$$
\begin{aligned}
& X_{s} \times{ }_{s} X_{s} \simeq X \times X \times S{ }^{\Delta \times 1_{s}} X_{s} \simeq X_{s} \times{ }_{s} S
\end{aligned}
$$

and
$\left\{\Gamma\left(L^{2} \otimes P_{\alpha+\gamma}\right) \otimes B\right\} \otimes_{B}\left\{\Gamma\left(L^{2} \otimes P_{\beta-\gamma}\right) \otimes B\right\} \simeq \Gamma\left(L^{2} \otimes P_{\alpha+\gamma}\right) \otimes \Gamma\left(L^{2} \otimes P_{\beta-\gamma}\right) \otimes B$ $\Gamma\left(T_{-y_{0}^{\prime}}^{*}\left(L^{2} \otimes P_{\alpha}\right)_{S}\right) \otimes \Gamma\left(T_{y_{0}}^{*}\left(L^{2} \otimes P_{\beta}\right)_{S}\right)$
$T_{-y_{0}}^{*} \otimes T_{y_{0}}^{*} \uparrow$
$\left\{\Gamma\left(L^{2} \otimes \boldsymbol{P}_{\alpha}\right) \otimes B\right\} \otimes_{B}\left\{\Gamma\left(L^{2} \otimes \boldsymbol{P}_{\beta}\right) \otimes B\right\} \simeq \Gamma\left(L^{2} \otimes \boldsymbol{P}_{\alpha}\right) \otimes \Gamma\left(L^{2} \otimes \boldsymbol{P}_{\beta}\right) \otimes B$

Hence

$$
U_{\lambda} \theta \cdot\left(U_{\lambda^{\prime}} \theta^{\prime}\right)\left(y_{0}^{\prime}\right) \in \operatorname{Im}(\tau \otimes B)=V \otimes B
$$

On the other hand, if we put $j\left(L^{4} \otimes P_{\beta-\alpha}\right)\left(\lambda^{\prime}\right)=u \in K\left(L^{4} \otimes P_{\beta-\alpha}\right)(B)$,

$$
\begin{aligned}
\iota^{*}\left(\left(U_{\lambda^{\prime}}, \theta^{\prime}\right)\left(y_{0}^{\prime}\right)\right) & =\iota^{*}\left(u+y_{0}^{\prime}\right) * \theta^{\prime} \\
& =\theta^{\prime}\left(y_{0}+u \circ \iota\right) .
\end{aligned}
$$

Since $u \circ \iota \in K\left(L^{4} \otimes P_{\beta-\alpha}\right)$, the condition (2) implies $\theta^{\prime}\left(y_{0}+u \circ \iota\right) \neq 0$, i.e., $\left(U_{\lambda} \theta^{\prime}\right)\left(y_{0}^{\prime}\right)$ is a unit of B. Therefore $U_{\lambda} \theta \in V \otimes B$ and we are done. Q.E.D.

References

[1] S. Koizumi: Theta relations and projective normality of abelian varieties. Amer. J. Math., 98(3), 865-889 (1976).
[2] -: The rank theorem on matrices of theta functions. J. Fac. Sci. University of Tokyo, Sec. IA, 24(1), 115-122 (1977).
[3] D. Mumford: On the equations defining abelian varieties. I. Invent. Math., 1, 287-354 (1966).
[4] -: Varieties defined by quadratic equations. Questioni sulle Varieta Algebriche, Corsi dal C.I.M.E., Edizioni Cremonese, Roma (1969).
[5] T. Sekiguchi: On projective normality of abelian varieties. J. Math. Soc. Japan, 28(2), 307-322 (1976).
[6] -: On projective normality of abelian varieties. II. Ibid., 29(4), 709727 (1977).
[7] -: On the cubics defining abelian varieties (to appear in J. Math. Soc. Japan, 30(4) (1978)).

