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1. Let H and V be a couple of real Hilbert spaces with V H V*
algebraically and topologically. The norm and inner product o H are
denoted by land (,) respectively, and those of V are by and
((,)). Let a(u, v) be a not necessarily symmetric bilinear form defined
on V V satisfying

a(u, v) l-_< C u v II, a(u, u) > u ,
for some positive constants C and a. The associated linear operator
is denoted by L"

a(u, v)=(Lu, v) u, v e V.
Let be a properly convex lower semicontinuous convex unction de-
fined on V. Then the operator A defined by

Au (Lu+ (u)) f H
is a maximal monotone mapping on H to 2. For uo D(A) and

f W,(O, T;H) let

u(t) lim V[ 1 + A- t u0
i=1

be the solution of
du(t) / dt / Au(t) f(t), u(O) --Uo

in the sense of M. G. Crandall-A. Pazy [4]. For this solution the fol-
lowing theorem holds.. A related result is Theorem 3.2 of F. J. Massey,
III [5], and in case L is symmetric also Corollary II. 2 of Chapter II
of H. Brezis [2].

Theorem 1. There exists a constant K such that

tD+ u(t) = K(l uo-- V /: f(s) ds / t Av ,)
+ fi lsf’(s)+ f(s)l cs,

where v is an arbirar element of D(A).
Outline of the proof. I suffices to prove the theorem in the ease

min --(0)--0. First assume Uo D(A) and f W’(O, T; H). For
eO let

(u)- inf - u-v +(v)
be the Yosida approximation of , and A be the operator defined by
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A,u= (Lu+ 3,(u)) H.
Let uo be the solution of the approximate equation

dub(t) / dt + Au,(t) f(t), u(O) -Uo
where Uo=(l+sA)-Uo. It is. not difficult to show that u,u in
L(0, T; V). Hence it suffices to establish the corresponding estimate
for u with constants independent of e, and we write u instead of uo to
simplify the notation. Noting that u(t) is. Lips.chitz continuous in
[0, T] it is easy to show that u’eL(O, T;V), and consequently
u" e L(0, T; V*). After a routine calculation we obtain

1 itu,(t)12_t_: (sLu’(s), su’(s))ds
2(1)

<= s lu’(s) ds + (sf’(s), su’(s))ds,

where we use the monotonicity of 3. On the other hand noting

d(u(t)) / dt ((u(t)), u’(t))
one easily deduce

(2) t s lu’(s) l d8 +t (Lu(s), su’(s))ds + t(u(t))

<=i (f(s), su’(s))ds+ It (u(s))ds.
Combining (1), (2) and the familiar inequality

2

--9.

and using Lemma A.5 of [1] we ean establish the desired estimate.
The result in the general ease is established by approximating 0 and

f in the obvious manner.
Z. As an application we consider the following unilateral problem

ou/Ot + u>=f
(u/t + u--f)(u-----O)

in/2 [0, T],

--u/n e fl(x, u) on F [0, T], u(x, O)-uo(X) in/2,
where _L is a linear elliptic operator of second order, and slightly im-
prove the estimate in the previous paper [6].

Let /2 be a not necessarily bounded domain in R with smooth
boundary F. Let

( Ouvbuv )a(u, v)- , a:- + , -- +cur dx
,J= Xi Xj = X

be a bilinear form defined on H(/2) H(/2). The coefficients a, b are

bounded and continuous together with their first derivatives and c is
bounded and measurable in /2. The matrix {a(x)} is uniformly
positive definite and there exists, a positive constant such that c a,
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c--] 3b/3x_>_ almost everywhere in 9. We denote by

_
the dif-

i=l

ferential operator associated with the bilinear form a(u, v)"

=-- ax +b .+c.

Let (x, r) be a unction defined on F(--, ) such that or
each x e F (x, r) is a properly convex lower semicontinuous unction
o2 r and (x, r)j(x, 0)=0. We denote by fl(x, .)-(x, .) the sub-
differential o (x, r) with respect to r. As or the regularity with
respect to x we assume that or eazh t e(--, ) and 0
(1+ fl(x, .))-(t) is a measurable unction o x (c2. B. D. Calvert-C. P.
Gupta [3]). Let " L(F)[0, ] be the convex unction defined by

(x, u(x))dF, (u) e L(F)(u) , otherwise.
Unless r](x,r)= as re0 (namely the boundary condition is

N

Dirichlet type), we assume that b,0 on F where ,=(,, ..., ,) is
i=l

the outer normal vector to F.
By G(A) we denote the graph of the mapping A.
The operator L" L(9)L(9), lp , is defined as follows"
(i) for p-2 f e Lu if u e H(9), (ur)

and

for every v e H(D) such ha (lr)<
(ii) for 2, G(g)=he closure of G(L)(L(D)XL(D)) in

g’(9) X g’(9).
In wha follows we assume 1< <2<* Np/(N--). e be

a function such ha e W’(D) W’(D), e g(D) and

+-(, )N0 on F, where
-(, )-min {" e (, r)} if e D((, )),
-(, r) if D((, .)) and sup D((, .)),
-(, )=-- if D((, .)) end rNinf D((, .)).

We define the maingM by
D() { e L(D) a.e. in D},
M={ e L(D) N0 a.e., ()=0 if ()>()},

and similarly M wih L(D) in place of L(D).
he opera,or Aq, 1 =< q =<*, is defined as follows"

(i) A=L+,
(ii) A=gt+,
(iii) for l<qN*, q, G(Aq)-he elos.ure of

x q(D)) in Lq(D) X Lq(D).
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Proposition. Aq is m-accretive and
D(Aq)-- {u e Lq() u= a.e. in

It is known that L+M is not m-accretive in general under our
hypothesis.

Let L" H(9)H(9)* be the operator associated with the bilinear
form a(u, v)" a(u, v)--(Lu, v) for u, v e HI(), and be the convex func-
tion on H(2) defined by

](x, u(x))dF, u>_ r a.e., and ](ulr) e LI(/’),(u)=
c, otherwise.

The effective domain D() of is not empty since it follows that
/ e D() from the present hypothesis. Then it is not difficult to show
that A coincides with the operator defined by

Au=(Lu+(u)) L2(2).
Thus applying Theorem 1 and a comparison theorem we obtain

Theorem 2. Suppose that f uo e Lq(9) and f e W1’1(0, T Lq(2)
Lr(tO)), l <= q <=2gr. Then for the solution of

du(t)/dt+Aqu(t) f(t), O<t<=T, u(0)--u0,
we have

D+u(t) ]1 <= Co{t:-(ll l[2 + v [[2 + t A V

f(s) ds

where v is an arbitrary element of D(A2), fl--N(r-l-2-1)/2, T--N(r---q-)/2, =-N(r---p-)/2 and II denotes the norm of Lr(9).
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