78. Remarks on the Differentiability of Solutions of Some Semilinear Parabolic Equations

By Hiroki Tanabe
Department of Mathematics, Osaka University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1978)

1. Let H and V be a couple of real Hilbert spaces with $V \subset H \subset V^{*}$ algebraically and topologically. The norm and inner product of H are denoted by | |and (,) respectively, and those of V are by $\|\|$ and $(()$,$) . Let a(u, v)$ be a not necessarily symmetric bilinear form defined on $V \times V$ satisfying

$$
|a(u, v)| \leqq C\|u\|\|v\|, \quad a(u, u) \geqq \alpha\|u\|^{2},
$$

for some positive constants C and α. The associated linear operator is denoted by L :

$$
a(u, v)=(L u, v) \quad u, v \in V .
$$

Let ϕ be a properly convex lower semicontinuous convex function defined on V. Then the operator A defined by

$$
A u=(L u+\partial \phi(u)) \cap H
$$

is a maximal monotone mapping on H to 2^{H}. For $u_{0} \in \overline{D(A)^{H}}$ and $f \in W^{1,1}(0, T ; H)$ let

$$
u(t)=\lim _{n \rightarrow \infty} \prod_{i=1}^{n}\left\{1+\frac{t}{n}\left(A-f\left(\frac{i}{n} t\right)\right)\right\}^{-1} u_{0}
$$

be the solution of

$$
d u(t) / d t+A u(t) \ni f(t), \quad u(0)=u_{0}
$$

in the sense of M. G. Crandall-A. Pazy [4]. For this solution the following theorem holds. A related result is Theorem 3.2 of F. J. Massey, III [5], and in case L is symmetric also Corollary II. 2 of Chapter II of H . Brezis [2].

Theorem 1. There exists a constant K such that

$$
\begin{aligned}
\left|t D^{+} u(t)\right| \leqq & K\left(\left|u_{0}-v\right|+\int_{0}^{t}|f(s)| d s+t\left|A^{0} v\right|\right) \\
& +\int_{0}^{t}\left|s f^{\prime}(s)+f(s)\right| d s
\end{aligned}
$$

where v is an arbitrary element of $D(A)$.
Outline of the proof. It suffices to prove the theorem in the case $\min \phi=\phi(0)=0$. First assume $u_{0} \in D(A)$ and $f \in W^{1,2}(0, T ; H)$. For $\varepsilon>0$ let

$$
\phi_{\epsilon}(u)=\inf _{v}\left\{\frac{1}{2 \varepsilon}\|u-v\|^{2}+\phi(v)\right\}
$$

be the Yosida approximation of ϕ, and A_{ε} be the operator defined by

$$
A_{\star} u=\left(L u+\partial \phi_{\iota}(u)\right) \cap H .
$$

Let u_{s} be the solution of the approximate equation

$$
d u_{s}(t) / d t+A_{c} u_{s}(t)=f(t), \quad u_{s}(0)=u_{0}
$$

where $u_{0 c}=\left(1+\varepsilon A_{c}\right)^{-1} u_{0}$. It is not difficult to show that $u_{c} \rightarrow u$ in $L^{2}(0, T ; V)$. Hence it suffices to establish the corresponding estimate for u_{s} with constants independent of ε, and we write u instead of u_{s} to simplify the notation. Noting that $u(t)$ is Lipschitz continuous in $[0, T]$ it is easy to show that $u^{\prime} \in L^{2}(0, T ; V)$, and consequently $u^{\prime \prime} \in L^{2}\left(0, T ; V^{*}\right)$. After a routine calculation we obtain

$$
\begin{align*}
& \frac{1}{2}\left|t u^{\prime}(t)\right|^{2}+\int_{0}^{t}\left(s L u^{\prime}(s), s u^{\prime}(s)\right) d s \tag{1}\\
& \quad \leqq \int_{0}^{t} s\left|u^{\prime}(s)\right|^{2} d s+\int_{0}^{t}\left(s f^{\prime}(s), s u^{\prime}(s)\right) d s
\end{align*}
$$

where we use the monotonicity of $\partial \phi_{c}$. On the other hand noting

$$
d \phi_{s}(u(t)) / d t=\left(\partial \phi_{s}(u(t)), u^{\prime}(t)\right)
$$

one easily deduce

$$
\begin{gather*}
\int_{0}^{t} s\left|u^{\prime}(s)\right|^{2} d s+\int_{0}^{t}\left(L u(s), s u^{\prime}(s)\right) d s+t \phi_{t}(u(t)) \tag{2}\\
\quad \leqq \int_{0}^{t}\left(f(s), s u^{\prime}(s)\right) d s+\int_{0}^{t} \phi_{s}(u(s)) d s
\end{gather*}
$$

Combining (1), (2) and the familiar inequality

$$
\begin{aligned}
& \frac{1}{2}|u(t)|^{2}+\int_{0}^{t}(L u(s), u(s)) d s+\int_{0}^{t} \phi_{t}(u(s)) d s \\
& \quad \leqq \frac{1}{2}\left(\left|u_{06}\right|+\int_{0}^{t}|f(s)| d s\right)^{2}
\end{aligned}
$$

and using Lemma A. 5 of [1] we can establish the desired estimate. The result in the general case is established by approximating u_{0} and f in the obvious manner.
2. As an application we consider the following unilateral problem

$$
\begin{aligned}
& \partial u / \partial t+\mathcal{L} u \geqq f, \quad u \geqq \Psi \\
& \left.\begin{array}{l}
\partial u / \partial t+\mathcal{L} u-f)(u-\Psi)=0
\end{array}\right\} \quad \text { in } \Omega \times[0, T], \\
& -\partial u / \partial n \in \beta(x, u) \quad \text { on } \Gamma \times[0, T], u(x, 0)=u_{0}(x) \quad \text { in } \Omega,
\end{aligned}
$$

where \mathcal{L} is a linear elliptic operator of second order, and slightly improve the estimate in the previous paper [6].

Let Ω be a not necessarily bounded domain in R^{N} with smooth boundary Γ. Let

$$
a(u, v)=\int_{\Omega}\left(\sum_{i, j=1}^{N} a_{i j} \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}}+\sum_{i=1}^{N} b_{i} \frac{\partial u}{\partial x_{i}} v+c u v\right) d x
$$

be a bilinear form defined on $H^{1}(\Omega) \times H^{1}(\Omega)$. The coefficients $a_{i j}, b_{i}$ are bounded and continuous together with their first derivatives and c is bounded and measurable in Ω. The matrix $\left\{a_{i j}(x)\right\}$ is uniformly positive definite and there exists a positive constant α such that $c \geqq \alpha$,
$c-\sum_{i=1}^{N} \partial b_{i} / \partial x_{i} \geqq \alpha$ almost everywhere in Ω. We denote by \mathcal{L} the differential operator associated with the bilinear form $a(u, v)$:

$$
\mathcal{L}=-\sum_{i, j=1}^{N} \frac{\partial}{\partial x_{i}}\left(a_{i j} \frac{\partial}{\partial x_{j}}\right)+\sum_{i=1}^{N} b_{i} \frac{\partial}{\partial x_{i}}+c .
$$

Let $j(x, r)$ be a function defined on $\Gamma \times(-\infty, \infty)$ such that for each $x \in \Gamma j(x, r)$ is a properly convex lower semicontinuous function of r and $j(x, r) \geqq j(x, 0)=0$. We denote by $\beta(x, \cdot)=\partial j(x, \cdot)$ the subdifferential of $j(x, r)$ with respect to r. As for the regularity with respect to x we assume that for each $t \in(-\infty, \infty)$ and $\lambda>0$ $(1+\lambda \beta(x, \cdot))^{-1}(t)$ is a measurable function of x (cf. B. D. Calvert-C. P. Gupta [3]). Let $\psi: L^{2}(\Gamma) \rightarrow[0, \infty]$ be the convex function defined by

$$
\psi(u)=\left\{\begin{aligned}
\int_{\Gamma} j(x, u(x)) d \Gamma, & j(u) \in L^{1}(\Gamma) \\
\infty, & \text { otherwise } .
\end{aligned}\right.
$$

Unless $r j(x, r)=\infty$ as $r \neq 0$ (namely the boundary condition is of Dirichlet type), we assume that $\sum_{i=1}^{N} b_{i} \nu_{i} \geqq 0$ on Γ where $\nu=\left(\nu_{1}, \cdots, \nu_{N}\right)$ is the outer normal vector to Γ.

By $G(A)$ we denote the graph of the mapping A.
The operator $L_{p}: L^{p}(\Omega) \rightarrow L^{p}(\Omega), 1 \leqq p<\infty$, is defined as follows:
(i) for $p=2 f \in L_{2} u$ if $u \in H^{1}(\Omega), \psi\left(\left.u\right|_{\Gamma}\right)<\infty$
and

$$
a(u, v-u)+\psi\left(\left.v\right|_{\Gamma}\right)-\psi\left(\left.u\right|_{\Gamma}\right) \geqq \int_{\Omega} f(v-u) d x
$$

for every $v \in H^{1}(\Omega)$ such that $\psi\left(\left.v\right|_{r}\right)<\infty$;
(ii) for $p \neq 2, G\left(L_{p}\right)=$ the closure of $G\left(L_{2}\right) \cap\left(L^{p}(\Omega) \times L^{p}(\Omega)\right)$ in $L^{p}(\Omega) \times L^{p}(\Omega)$.

In what follows we assume $1<p<2<p^{*}=N p /(N-p) . \quad$ Let Ψ be a function such that $\Psi \in W^{2, p}(\Omega) \cap W^{1,1}(\Omega), \mathcal{L} \Psi \in L^{1}(\Omega)$ and $\partial \Psi / \partial n$ $+\beta^{-}(x, \Psi) \leqq 0$ on Γ, where

$$
\begin{aligned}
& \beta^{-}(x, r)=\min \{z: z \in \beta(x, r)\} \quad \text { if } r \in D(\beta(x, \cdot)), \\
& \beta^{-}(x, r)=\infty \quad \text { if } r \notin D(\beta(x, \cdot)) \quad \text { and } \quad r \geqq \sup D(\beta(x, \cdot)), \\
& \beta^{-}(x, r)=-\infty \quad \text { if } r \notin D(\beta(x, \cdot)) \quad \text { and } \quad r \leqq \inf D(\beta(x, \cdot)) .
\end{aligned}
$$

We define the mapping M_{p} by

$$
\begin{aligned}
D\left(M_{p}\right) & =\left\{u \in L^{p}(\Omega): u \geqq \Psi \text { a.e. in } \Omega\right\}, \\
M_{p} u & =\left\{g \in L^{p}(\Omega): g \leqq 0 \text { a.e., } g(x)=0 \quad \text { if } u(x)>\Psi(x)\right\},
\end{aligned}
$$

and similarly M_{1} with $L^{1}(\Omega)$ in place of $L^{p}(\Omega)$.
The operator $A_{q}, 1 \leqq q \leqq p^{*}$, is defined as follows :
(i) $A_{p}=L_{p}+M_{p}$,
(ii) $A_{1}=L_{1}+M_{1}$,
(iii) for $1<q \leqq p^{*}, q \neq 2, G\left(A_{q}\right)=$ the closure of $G\left(A_{p}\right) \cap\left(L^{q}(\Omega)\right.$ $\left.\times L^{q}(\Omega)\right)$ in $L^{q}(\Omega) \times L^{q}(\Omega)$.

Proposition. A_{q} is m-accretive and

$$
\overline{D\left(A_{q}\right)}=\left\{u \in L^{q}(\Omega): u \geqq \Psi \text { a.e. in } \Omega\right\} .
$$

It is known that $L_{2}+M_{2}$ is not m-accretive in general under our hypothesis.

Let $L: H^{1}(\Omega) \rightarrow H^{1}(\Omega)^{*}$ be the operator associated with the bilinear form $a(u, v): a(u, v)=(L u, v)$ for $u, v \in H^{1}(\Omega)$, and ϕ be the convex function on $H^{1}(\Omega)$ defined by

$$
\phi(u)=\left\{\begin{array}{cl}
\int_{\Gamma} j(x, u(x)) d \Gamma, & u \geqq \Psi \text { a.e., and } \quad j\left(\left.u\right|_{\Gamma}\right) \in L^{1}(\Gamma), \\
\infty, & \text { otherwise. }
\end{array}\right.
$$

The effective domain $D(\phi)$ of ϕ is not empty since it follows that $\Psi^{+} \in D(\phi)$ from the present hypothesis. Then it is not difficult to show that A_{2} coincides with the operator defined by

$$
A u=(L u+\partial \phi(u)) \cap L^{2}(\Omega) .
$$

Thus applying Theorem 1 and a comparison theorem we obtain
Theorem 2. Suppose that $\Psi \leqq u_{0} \in L^{q}(\Omega)$ and $f \in W^{1,1}\left(0, T ; L^{q}(\Omega)\right.$ $\left.\cap L^{r}(\Omega)\right), 1 \leqq q \leqq 2 \leqq r$. Then for the solution of

$$
d u(t) / d t+A_{q} u(t) \text { Э } f(t), \quad 0<t \leqq T, u(0)=u_{0},
$$

we have

$$
\begin{aligned}
\left\|D^{+} u(t)\right\|_{r} \leqq & C_{0}\left\{t^{\beta-1}\left(\|\Psi\|_{2}+\|v\|_{2}+t\left\|A_{2}^{\circ} v\right\|_{2}\right)\right. \\
& +t^{r-1}\left\|u_{0}\right\|_{q}+t^{\delta}\left\|(L \Psi)^{+}\right\|_{p}+t^{\beta-1} \int_{0}^{t}\|f(s)\|_{2} d s \\
& \left.+t^{\beta-1} \int_{0}^{t} s\left\|f^{\prime}(s)\right\|_{2} d s+\int_{0}^{t}\left\|f^{\prime}(s)\right\|_{r} d s\right\}
\end{aligned}
$$

where v is an arbitrary element of $D\left(A_{2}\right), \beta=N\left(r^{-1}-2^{-1}\right) / 2, \gamma=N\left(r^{-1}\right.$ $\left.-q^{-1}\right) / 2, \delta=N\left(r^{-1}-p^{-1}\right) / 2$ and $\left\|\|_{r}\right.$ denotes the norm of $L^{r}(\Omega)$.

References

[1] H. Brezis: Opérateurs maximaux monotones. North-Holland Math. Studies (1973).
[2] -: Problémes unilatéraux. J. Math. pure appl., 51, 1-168 (1972).
[3] B. D. Calvert and C. P. Gupta: Nonlinear elliptic boundary value problems in L^{p}-spaces and sums of ranges of accretive operators. Nonlinear Anal., 2, 1-26 (1978).
[4] M. G. Crandall and A. Pazy: Nonlinear evolution equations in Banach spaces. Israel J. Math., 11, 57-94 (1972).
[5] F. J. Massey, III: Semilinear parabolic equations with L^{1} initial data, Indiana Univ. Math. J., 26, 399-412 (1977).
[6] H. Tanabe: On some unilateral problem of elliptic and parabolic type. Proc. Japan Acad., 54A, 194-196 (1978).

