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1. It is known that homogeneous convex cones play an important
role in the theory of homogeneous bounded domains (see e.g., [3], [5],
[8], [10], [12]). From the differential geometric point of view, it is
interesting to investigate the Riemanniangeometric properties of homo-
geneous convex cones. Several results about homogeneous self-dual
cones are known. For instance, a homogeneous self-dual cone is a
Riemannian symmetric space of non-positive curvature [9]. However
it is little known about homogeneous non-self-dual cones. In this note,
we will announce some results about the Riemannian geometry of homo-
geneous convex cones.. The detailed results with their complete
proofs will appear elsewhere.

2. Let V be an open convex cone in the n-dimensional real number
space R which does not contain any full straight line. We denote by
G(V) the group of all linear automorphisms of V, that is, G(V)
={a e GL(n); aV= V}. If G(V) acts transitively on V, then the cone
V is called homogeneous. Let (,) be an inner product in R. Then
the dual cone V* of V is defined by V*={y e Rn; (x, y)0 for any x in
V--(0)}, where V is the topological closure of V in Rn. A cone V is
called self-dual if the dual cone V* with respect to a suitable inner
product coincides with V. Following Koecher and Vinberg, we define
the characteristic function 9 of V by

9(x)=[ exp-(x,y}dy (x e V),
JV*

where dy is a canonical Euclidean measure on Rn. From the charac-
teristic function of V, we define a symmetric 2-form g on V by

3 log , dxdx,g= OxOxj
where (x, x2, ..., Xn) denotes a linear coordinates of R. Then g is a
G(V)-invariant Riemannian metric on V, which is called a canonical
Riemannian metric of V. Therefore with this metric, the cone V is a
homogeneous Riemannian manifold (cf. [9], [10], [12]).

3. In this section, we state results about the canonical Rieman-
nian metric. It was proved in [11] that for every positive constant c,
the surface in R defined by {x e V; (x)=c} is a homogeneous affine
hypersphere of hyperbolic type. By using this, we can prove the fol-
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lowing
Proposition 1o A homogeneous convex cone is homothetically

equivalent to a product Riemannian manifold of a homogeneous affine
hypersphere of hyperbolic type and a l-dimensional fiat space.

It is known in [2] that the Ricci curvature of a complete affine hy-
persphere o hyperbolic type is non-positive. Combining this and
Proposition 1, we have

Theorem 1. The Ricci curvature of a homogeneous convex cone
is non-positive.

We remark that for the sectional curvature, the analogous asser-
tion as in the theorem mentioned above does not hold. In act ifn8,
then there exists an n-dimensional homogeneous convex cone whose
sectional curvature attains both signs.. For instance, we have

Proposition 2. Let V be a homogeneous convex cone in R/ defined
as follows" V= {x=(x, x, ., x/) xO, A(x) is positive definite},
where A(x)=(a(x)) is a symmetric matrix of degree 3 such that a(x)
xx- x, a(x) xx, a(x) xx, a(x) xx, a(x) xx and

8i7+m

a33(x)--xsx4. Then the sectional curvature of V attains both signs.
On the other hand, lower dimensional homogeneous convex cones

were classified in [6]. The following theorems are proved by using
this classification and calculations based on the methods in [1], [4] and
[7].

Theorem 2. Let V be an n-dimensional homogeneous convex cone
with n_7. Then the sectional curvature of V is non-positive.

On isometries of the canonical Riemannian metric, we have
Theorem 3. Let V be an n-dimensional homogeneous convex cone

with n_8. Then there exists no infinitesimal isometry other than in-
finitesimal linear isometry on V.
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