94. On Determinants of Cartan Matrices of p-Blocks

By Mitsuo FUJII

Department of Mathematics, Osaka University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 13, 1980)

1. Introduction. Let B be a p-block of a finite group with defect group D, and C_B the Cartan matrix of B. Then it is known that det $C_B \ge |D|$. In [6] we showed that the equality holds in the above under some assumption. The purpose of this note is to extend this result.

Notation. Let G be a finite group with order divisible by a fixed prime p and p a fixed prime divisor of p in the ring $Z[\varepsilon]$, where ε is a primitive |G|-th root of 1. We denote by F the residue class field $Z[\varepsilon]/p$, by FG the group algebra of G over F, and by Z(FG) the center of FG. If B is a block of G, we denote by C_B the Cartan matrix of B, by D(B) a defect group of B, and by l(B) the number of irreducible modular characters in B. If Q is a p-subgroup of G, $m_B(Q)$ denotes the number of p-regular (conjugate) classes of G associated with B which have Q as a defect group. (For selection of sets of conjugate classes for the blocks, see Brauer [1], [2], [4], Osima [8], and Iizuka [7].) We denote by S(B) the set of subsections $s = (\pi, b)$ associated with B which are different from 1=(1, B). (For a subsection, see Brauer [3].) For brevity we write C(X) and N(X) instead of $C_G(X)$ and $N_G(X)$ for a subset X of G respectively. If K is a conjugate class of G, we denote by \hat{K} the class sum of K in the group algebra FG.

The main result of this note is the following

Theorem. Let B be a block of G.

(i) For a proper subgroup $Q \neq 1$ of D(B), if $m_B(Q) \neq 0$, then $m_b(Q) \neq 0$ for some $s = (\pi, b) \in S(B)$ such that D(b) contains Q as a proper subgroup.

(ii) If det $C_b = |D(b)|$ for any $s = (\pi, b) \in S(B)$, then det $C_B = |D(B)|$. Next corollary is an immediate consequence of Theorem, (ii).

Corollary 1. Let B be a block of G with defect group D. Suppose that l(b)=1 for any $s=(\pi, b) \in S(B)$. Then det $C_B=|D|$.

As a special case we have the following

Corollary 2 (Fujii [6]). Let B be a block of G with defect group D. Suppose that the centralizer in G of any element of order p of D is p-nilpotent. Then det $C_B = |D|$.

Remark. The first part of Theorem still holds even if we denote by $m_B(Q)$ the number of conjugate classes of G associated with B which have Q as a defect group.

Remark. For any $s = (\pi, b) \in S(B)$, det $C_b = |D(b)|$ is equivalent to l(b)=1.

2. Proof of Theorem. Let D(B)=D. The defect groups of *p*-regular classes of *G* associated with *B* are all conjugate to subgroups of *D*, and the set of their orders coincides with the set of elementary divisors of C_B . The greatest elementary divisor of C_B is equal to |D| and all other elementary divisors are less than |D|. (For example, see Curtis-Reiner [5] and Brauer [4].) Therefore (i) implies (ii). We shall prove (i).

In the proof of (i), the next lemma is fundamental.

Lemma (Brauer [4]). Let B be a block of G with defect group D. For any subgroup Q of D, $m_B(Q) = \Sigma_B m_B(Q)$, where \tilde{B} ranges over the blocks of N(Q) with $\tilde{B}^a = B$.

By the lemma, there exists a block \tilde{B} of N(Q) with $\tilde{B}^{a} = B$ such that $m_{\tilde{B}}(Q) \neq 0$. By Brauer's first main theorem we may assume that $Q \subseteq D(\tilde{B}) \subset D(B)$. Let $E = \sum_{K} a_{K} \hat{K}$ be the block idempotent of Z(FN(Q)) corresponding to \tilde{B} , where K ranges over the p-regular classes of N(Q) and $a_{K} \in F$. If $a_{K} \neq 0$ then a defect group of K contains Q. Therefore E is an idempotent of Z(FQC(Q)). Let $E = e_{0} + \cdots$ be the decomposition into the sum of block idempotents of Z(FQC(Q)) and b_{0} the block of QC(Q) corresponding to e_{0} . Then $b_{0}^{N(Q)} = \tilde{B}$ and \tilde{B} is a unique block which covers b_{0} . Let T denote the inertia group of b_{0} in N(Q). Then e_{0} is also a block idempotent of Z(FT) corresponding to the unique block b_{0}^{T} which has $D(\tilde{B})$ as a defect group and covers b_{0} . Therefore if H is a subgroup of N(Q) which contains $D(\tilde{B})C(Q)$, it follows that b_{0}^{H} is a unique block which has $D(\tilde{B})$ as a defect group and covers b_{0} .

Now we may choose a *p*-element $\pi(\neq 1)$ such that $\pi \in Q \cap Z(S)$, where *S* is a Sylow *p*-subgroup of *T* which contains $D(\tilde{B})$, since *Q* is normal in *S* and so $Q \cap Z(S) \neq 1$. Let $H = C(\pi) \cap N(Q)$. Since $S \subset H$, we have that $(p, |T: H \cap T|) = 1$. Since $E \in Z(FQC(Q))$, $E \in Z(FH)$ and let $E = E_0 + \cdots$ be the decomposition into the sum of block idempotents of Z(FH) and B_0 the block of *H* corresponding to E_0 . Then we may assume that B_0 covers b_0 , so $B_0 = b_0^H$ and $D(B_0) = D(\tilde{B})$.

Since $m_B(Q) \neq 0$, there exists a *p*-regular class *K* of N(Q) with defect group *Q* such that $\hat{K}E \neq 0$. Since $K \subset QC(Q)$, *K* is a union of some *p*-regular classes $\{L\}$ of *H* with defect group *Q*. Then we have $\hat{K}E_0 \neq 0$ and this means $\hat{L}E_0 \neq 0$ for some *L*. Indeed $\hat{K}E \neq 0$ implies $\hat{K}e_0 \neq 0$. Let $\{x_i\}$ be an $(H \cap T)$ -transversal of *H* and $\{y_j\}$ an *H*-transversal of N(Q). Now assume that $\hat{K}E_0=0$. Then it follows that $0=\Sigma_j\hat{K}E_0^{y_j}=\Sigma_{i,j}\hat{K}e_0^{x_{iy_j}}=|T:H\cap T|\,\hat{K}E$. Since $|T:H\cap T|\neq 0 \pmod{p}$, this means $\hat{K}E=0$, a contradiction. Therefore this implies $m_{B_0}(Q)\neq 0$.

402

Now let $b=B_0^{C(\pi)}$ and $s=(\pi, b)$. Since $b^{G}=B_0^{G}=B$, we have $s=(\pi, b) \in S(B)$. Then we have $m_b(Q) \neq 0$ by the lemma since $m_{B_0}(Q) \neq 0$.

References

- R. Brauer: On the arithmetic in a group ring. Proc. Nat. Acad. Sci., 30, 109-114 (1944).
- [2] —: On blocks of characters of groups of finite order I. Ibid., 32, 182– 186 (1946).
- [3] —: On blocks and sections in finite groups I, II. Amer. J. Math., 89, 1115-1136 (1967); 90, 895-925 (1968).
- [4] ——: Defect groups in the theory of representations of finite groups. Illinois J. Math., 13, 53-73 (1969).
- [5] C. W. Curtis and I. Reiner: Representation theory of finite groups and associative algebras. Wiley-Interscience, New York (1962).
- [6] M. Fujii: A remark on the Cartan matrix of a certain p-block. Osaka J. Math., 17, 411-414 (1980).
- [7] K. Iizuka: Notes on blocks of group characters. Kumamoto J. Sci., Ser. A2, 309-321 (1956).
- [8] M. Osima: Notes on blocks of group characters. Math. J. Okayama Univ., 4, 175-188 (1955).