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(Communicated by Shokichi IYANAGA, M. J. A., Oct. 13, 1980)

Introduction. This is a continuation of the first paper 1 which
will be referred to as (I) in this paper. *) Our purpose here is to de-
termine invariants p,a (see (I.l.1), (I.1.6)) for quadratic mappings
F" X-+Y of vector spaces over a finite field K--Fq (q" odd) with respect
to the quadratic character of the multiplicative group of K. In par-
ticular, we shall obtain explicit values of invariants for such mappings
arising from pairs of quadratic forms.

1. Quadratic mappings. Let K be the finite field with q ele-
ments" K--Fq (q" odd). Denote by the character of K of order 2.
As usual, we extend Z to K by Z(0)=0. Let X, Y be vector spaces over
K of dimension n, m, respectively, and F" X-+Y be a quadratic map-
ping. By definition, F= F is a quadratic form on X for every
linear form e Y*. By (I.1.6), we have

(1.1) a= E ISl,
2Y*

where
(1.2) Sra--Ez(F(x)).

xX

Thanks to the following lemma, proof of which is left to the reader
as an exercise, the determination of a is much easier than that of

(1.3) Lemrna. Let V be a vector space of dimension r over K and
Q be a non-degenerate quadratic form on V. Then we have

fO if r is even,Sq= z(Q(x))
xe (q--1)q(r-)/Z((--1)(r-)/ det Q), if r is odd.

(1.4) Theorem. Let K=Fq (q" odd). Let F be a quadratic map-
ping X-+Y of vector spaces over K, n=dim X, m=dim Y. Let r be
the rank of the quadratic form F=I F, e Y*. Then, we have

p=q-(q--1) , q-.
odd

Proof. Write F as a diagonal orm ax+. +aXr, a e K.
By (1.3), we have

S= z(ax+
xX

E E z(a,x+... +aXr)
(Xr+l,’*’, Xn) (Xl,.." ,Xr2)

For example, we mean by (I.2.3) the item (2.3) in (I).
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_{0q, if r is even,
-(/)/(q-1)((-1)(-i)/d), if r is odd,

where d-a. a. We have then
q=(q-) F, q--’

r odd

and (1.4) ollows from (I.1.11). Q.E.D.
2. Pairs of quadratic forms. Let A be an nn matrix eKe.

Let E, ., E be elementary divisors of the polynomial matrix Xln-- A.
For an eigenvalue w e (the algebraic closure of K) of A, suppose that
(x-w)’ divides E but (x-w)/ does not. Since E divides E/, we
get the descending sequence

(2.1) e___e_:>. e_>_e_>_0.
Omitting zeros from (2.1), we get the sequence of natural numbers

(2.2) en en_> - en_(-).
We write (2.2) as

(2.3) e(w)=(en, en_i, "’’, en_(-))
and call e(w) the set of exponents for the eigenvalue w of A. We put
k=/(w) and call this the length of e(w). Finally, we put

(2.4) s(A)=[e(w), ..., e((ot)],
where w, ..., w are all distinct eigenvalues (in ) of A. The symbol
s(A) is known as the Segre characteristic of the matrix A.

For each eigenvalue w of A, put

(2.5)

Jn-(-l)
1

where k=l(o), n>=i>=n-(k-1). Then, A is equivalent to the Jordaa
canonical form, i.e. the direct sum of A s.

(2.6) Lemma. Let A Kn and c e K. Put rk (c)----rank (cl-A).
Let =(o, ..., o} be the set of all distinct eigenvalues of A (in ).
Then, we have

rk (c)= {n, if c [2,
n--l(), if c e [2,

where l(w) is the length of the set of exponents for the eigenvalue
of A.

Proof. The case c e/2 is trivial. If c= e Y2, then, for i], we
have rank (cl,--A,)=m=the multiplicity of in the characteristic
polynomial of A. On the other hand, we have rank (cl-A)=m
-l(w) since each block J of A (see (2.5)) loses the rank by I by the
subtraction. Q.E.D.

Now, let K=Yq (q" odd), z--gn, Y=K and F" X-Y be a quad-
ratic mapping. Hence, a pair of quadratic form (F,, F) is defined by
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F(x) (F(x), F(x)). Using column vectors, we identify quadratic
forms F(x), F(x) with symmetric matrices A, B e K such that F(x)
--txAx, F(x)=txBx, respectively. A linear form 2 e Y* may be

written as =(, fl)when (Y)=Yl+flYf, y---(:)e Y=K. The quad-

ratic form F(x)=2(F(x)) may be identifiecl with the symmetric matrix
aA+ fib and we have

(2.7) r=rank F rank (aA +/B).
From now on, we assume that the quclratic form F(x) is non-degen-
erate, i.e. det A =/=0. Then, we have

(2.8) r=rank(aln+flC), =(, ), C=A-1B.
Denote by 2 the set of ll distinct eigenvalues (in K) of C. Then,
(2.6) implies that

0, i c==0,
(2.9) r= n, i a:/:0, fl=0,

n, i :/:0 and -(c/)
n-l(-(a/fl)), if ve0 and -(/fl) e

Substituting the values r in (2.9) back into (1.4) we obtain the values
of p,,, a for pair of quadratic forms F(x)=(F(x), F.(x)) where F(x) is
non-degenerate. Namely, put tfc, tfc K, the set
C=A-’B contained in K. Let nc,:= [9c,], the cardinality. (It may
well happen that nc,=0.) For each e 9c,, 2=(, fl) with fl=/=0 and

a=-flw provides a linear form such that -(a/fl)=0. Since there are
q-1 fl’s each w contributes q-1 2’s. Hence, the number of 2’s or
which a=/=0, fl=0 is q--l, the number of ’s for which fl=/=0 and -(a/fl)
e/2c, is (q--1)(q--nc,) and the number of 2’S /or which fl=/=0 and
-(a/) e 9c, is (q-1)nc,. Taking the parity of r into account, we
get, from (1.4), the 2ollowing

(2.10) Theorem. Let K=Fq (q" ocld), F=(F1, F) be a quadratic
mapping K--+K such that the quadratic form FI is non-degenerate.
Let A, B be symmetric matrices corresponding to F1, Ff, respectively,
and let C=A-B. Let nc, be the number of all distinct eigenvalues

of C contained in K and, for each such eigenvalue o let l(oo) be the
length of the set of exponents for w. Then, we have

qn-(q--1) q, if n is even,
0F

(o)) odd

qn-(q--1)(l+q--nc,+ , q()), if n is odd.
()

(2.11) Remark. Note that p depends only on the Segre charac-
teristic s(C) o C=A-’B when every eigenvalue of C is in K. Under
this assumption, we give here the complete list of p for n=3.



400 T. ONO [Vol. 56 (A),

Segre
char. F- (F, F)

[,,]
[2,1]
[(1,1),1]
[3]
[(2,1)]
[(1,1,1)]

q(q-1)(q- 2)
q(q- 1)
q(q-1)(q+q-1)
q(q- 1)
q(q-1)2(q+l)
q(q- 1)

[1]
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