93. On Certain Numerical Invariants of Mappings over Finite Fields. II

By Takashi Ono
Department of Mathematics, Johns Hopkins University
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 13, 1980)

Introduction. This is a continuation of the first paper [1] which will be referred to as (I) in this paper.*) Our purpose here is to determine invariants ρ_{F}, σ_{F} (see (I.1.1), (I.1.6)) for quadratic mappings $F: X \rightarrow Y$ of vector spaces over a finite field $K=F_{q}$ ($q:$ odd) with respect to the quadratic character of the multiplicative group of K. In particular, we shall obtain explicit values of invariants for such mappings arising from pairs of quadratic forms.
§ 1. Quadratic mappings. Let K be the finite field with q elements: $K=F_{q}$ (q : odd). Denote by χ the character of K^{\times}of order 2. As usual, we extend χ to K by $\chi(0)=0$. Let X, Y be vector spaces over K of dimension n, m, respectively, and $F: X \rightarrow Y$ be a quadratic mapping. By definition, $F_{\lambda}=\lambda \circ F$ is a quadratic form on X for every linear form $\lambda \in Y^{*}$. By (I.1.6), we have

$$
\begin{equation*}
\sigma_{F}=\sum_{\lambda \in Y^{*}}\left|S_{F_{\lambda}}\right|^{2}, \tag{1.1}
\end{equation*}
$$

where
(1.2) $\quad S_{F_{\lambda}}=\sum_{x \in X} \chi\left(F_{\lambda}(x)\right)$.

Thanks to the following lemma, proof of which is left to the reader as an exercise, the determination of σ_{F} is much easier than that of ρ_{F}.
(1.3) Lemma. Let V be a vector space of dimension r over K and Q be a non-degenerate quadratic form on V. Then we have

$$
S_{Q}=\sum_{x \in V} \chi(Q(x))= \begin{cases}0, & \text { if } r \text { is even }, \\ (q-1) q^{(r-1) / 2} \chi\left((-1)^{(r-1) / 2} \operatorname{det} Q\right), & \text { if } r \text { is odd } .\end{cases}
$$

(1.4) Theorem. Let $K=\boldsymbol{F}_{q}$ (q : odd). Let F be a quadratic mapping $X \rightarrow Y$ of vector spaces over $K, n=\operatorname{dim} X, m=\operatorname{dim} Y$. Let r_{λ} be the rank of the quadratic form $F_{\lambda}=\lambda \circ F, \lambda \in Y^{*}$. Then, we have

$$
\rho_{F}=q^{n-m}(q-1) \sum_{r_{\lambda} \text { odd }} q^{n-r_{\lambda}} .
$$

Proof. Write F_{λ} as a diagonal form $a_{1} x_{1}^{2}+\cdots+a_{r_{\lambda}} x_{r_{\lambda}}^{2}, a_{i} \in K^{\times}$. By (1.3), we have

$$
\begin{aligned}
S_{F_{\lambda}} & =\sum_{x \in X} \chi\left(a_{1} x_{1}^{2}+\cdots+a_{r_{\lambda}} x_{r_{\lambda}}^{2}\right) \\
& =\sum_{\left(x_{r_{\lambda}+1}+\cdots, x_{n}\right)} \sum_{\left(x_{1}, \ldots, x_{r_{\lambda}}\right)} \chi\left(a_{1} x_{1}^{2}+\cdots+a_{r_{\lambda}} x_{r_{\lambda}}^{2}\right)
\end{aligned}
$$

*) For example, we mean by (I.2.3) the item (2.3) in (I).

$$
= \begin{cases}0, & \text { if } r \text { is even, }, \\ q^{n-\left(r_{2}+1\right) / 2}(q-1) \chi\left((-1)^{\left(r_{\lambda}-1\right) / 2} d_{\lambda}\right), & \text { if } r_{\lambda} \text { is odd },\end{cases}
$$

where $d_{2}=a_{1} \cdots a_{r_{2}}$. We have then

$$
\sigma_{F}=(q-1)^{2} \sum_{r_{2} \text { odd }} q^{2 n-r_{2}-1}
$$

and (1.4) follows from (I.1.11).
Q.E.D.
§ 2. Pairs of quadratic forms. Let A be an $n \times n$ matrix $\in K_{n}$. Let E_{1}, \cdots, E_{n} be elementary divisors of the polynomial matrix $x 1_{n}-A$. For an eigenvalue $\omega \in \bar{K}$ (the algebraic closure of K) of A, suppose that $(x-\omega)^{e_{i}}$ divides E_{i} but $(x-\omega)^{e_{i+1}}$ does not. Since E_{i} divides E_{i+1}, we get the descending sequence
(2.1) $e_{n} \geqq e_{n-1} \geqq \cdots \geqq e_{2} \geqq e_{1} \geqq 0$.

Omitting zeros from (2.1), we get the sequence of natural numbers
(2.2) $e_{n} \geqq e_{n-1} \geqq \cdots \geqq e_{n-(k-1)}$.

We write (2.2) as
(2.3) $e(\omega)=\left(e_{n}, e_{n-1}, \cdots, e_{n-(k-1)}\right)$
and call $e(\omega)$ the set of exponents for the eigenvalue ω of A. We put $k=l(\omega)$ and call this the length of $e(\omega)$. Finally, we put
(2.4) $s(A)=\left[e\left(\omega_{1}\right), \cdots, e\left(\omega_{t}\right)\right]$,
where $\omega_{1}, \cdots, \omega_{t}$ are all distinct eigenvalues (in \bar{K}) of A. The symbol $s(A)$ is known as the Segre characteristic of the matrix A.

For each eigenvalue ω of A, put
(2.5) $\quad A_{\omega}=\left(\begin{array}{lllll}J_{n} & & & \\ & J_{n-1} & & \\ & & \ddots & \\ & & & J_{n-(k-1)}\end{array}\right], \quad J_{i}=\left[\begin{array}{lllll}\omega & 1 & & \\ & \omega & 1 & \\ & & & \ddots & \\ & & & \ddots & 1 \\ & & & & \omega\end{array}\right] \in(\bar{K})_{e}$,
where $k=l(\omega), n \geqq i \geqq n-(k-1)$. Then, A is equivalent to the Jordan canonical form, i.e. the direct sum of $A_{\omega i}$'s.
(2.6) Lemma. Let $A \in K_{n}$ and $c \in K . \quad$ Put $\operatorname{rk}(c)=\operatorname{rank}\left(c 1_{n}-A\right)$. Let $\Omega=\left\{\omega_{1}, \cdots, \omega_{t}\right\}$ be the set of all distinct eigenvalues of $A($ in $\bar{K})$. Then, we have

$$
\operatorname{rk}(c)= \begin{cases}n, & \text { if } c \notin \Omega, \\ n-l(\omega), & \text { if } c \in \Omega,\end{cases}
$$

where $l(\omega)$ is the length of the set of exponents for the eigenvalue ω of A.

Proof. The case $c \notin \Omega$ is trivial. If $c=\omega_{j} \in \Omega$, then, for $i \neq j$, we have rank ($c 1_{m_{i}}-A_{\omega i}$) $=m_{i}=$ the multiplicity of ω_{i} in the characteristic polynomial of A. On the other hand, we have rank $\left(c 1_{m_{j}}-A_{o j}\right)=m_{j}$ $-l\left(\omega_{j}\right)$ since each block J_{i} of $A_{a j}$ (see (2.5)) loses the rank by 1 by the subtraction.
Q.E.D.

Now, let $K=F_{q}(q: o d d), X=K^{n}, Y=K^{2}$ and $F: X \rightarrow Y$ be a quadratic mapping. Hence, a pair of quadratic form $\left(F_{1}, F_{2}\right)$ is defined by
$F(x)=\left(F_{1}(x), F_{2}(x)\right)$. Using column vectors, we identify quadratic forms $F_{1}(x), F_{2}(x)$ with symmetric matrices $A, B \in K_{n}$ such that $F_{1}(x)$ $={ }^{t} x A x, F_{2}(x)={ }^{t} x B x$, respectively. A linear form $\lambda \in Y^{*}$ may be written as $\lambda=(\alpha, \beta)$ when $\lambda(y)=\alpha y_{1}+\beta y_{2}, y=\binom{y_{1}}{y_{2}} \in Y=K^{2}$. The quadratic form $F_{\lambda}(x)=\lambda(F(x))$ may be identified with the symmetric matrix $\alpha A+\beta B$ and we have
(2.7) $\quad r_{\lambda}=\operatorname{rank} F_{\lambda}=\operatorname{rank}(\alpha A+\beta B)$.

From now on, we assume that the quadratic form $F_{1}(x)$ is non-degenerate, i.e. $\operatorname{det} A \neq 0$. Then, we have
(2.8) $\quad r_{\lambda}=\operatorname{rank}\left(\alpha 1_{n}+\beta C\right), \quad \lambda=(\alpha, \beta), \quad C=A^{-1} B$.

Denote by Ω_{C} the set of all distinct eigenvalues (in \bar{K}) of C. Then, (2.6) implies that

$$
r_{\lambda}= \begin{cases}0, & \text { if } \alpha=\beta=0, \tag{2.9}\\ n, & \text { if } \alpha \neq 0, \beta=0, \\ n, & \text { if } \beta \neq 0 \text { and }-(\alpha / \beta) \notin \Omega_{C}, \\ n-l(-(\alpha / \beta)), & \text { if } \beta \neq 0 \text { and }-(\alpha / \beta) \in \Omega_{c} .\end{cases}
$$

Substituting the values r_{λ} in (2.9) back into (1.4) we obtain the values of ρ_{F}, σ_{F} for pair of quadratic forms $F(x)=\left(F_{1}(x), F_{2}(x)\right)$ where $F_{1}(x)$ is non-degenerate. Namely, put $\Omega_{C, K}=\Omega_{C} \cap K$, the set of eigenvalues of $C=A^{-1} B$ contained in K. Let $n_{C, K}=\left[\Omega_{C, K}\right]$, the cardinality. (It may well happen that $n_{C, K}=0$.) For each $\omega \in \Omega_{C, K}, \lambda=(\alpha, \beta)$ with $\beta \neq 0$ and $\alpha=-\beta \omega$ provides a linear form such that $-(\alpha / \beta)=\omega$. Since there are $q-1 \beta$'s each ω contributes $q-1 \lambda$'s. Hence, the number of λ 's for which $\alpha \neq 0, \beta=0$ is $q-1$, the number of λ 's for which $\beta \neq 0$ and $-(\alpha / \beta)$ $\notin \Omega_{c, K}$ is $(q-1)\left(q-n_{C, K}\right)$ and the number of λ 's for which $\beta \neq 0$ and $-(\alpha / \beta) \in \Omega_{C, K}$ is $(q-1) n_{c, K}$. Taking the parity of r_{λ} into account, we get, from (1.4), the following
(2.10) Theorem. Let $K=F_{q}\left(q\right.$: odd), $F=\left(F_{1}, F_{2}\right)$ be a quadratic mapping $K^{n} \rightarrow K^{2}$ such that the quadratic form F_{1} is non-degenerate. Let A, B be symmetric matrices corresponding to F_{1}, F_{2}, respectively, and let $C=A^{-1} B$. Let $n_{c, K}$ be the number of all distinct eigenvalues of C contained in K and, for each such eigenvalue ω let $l(\omega)$ be the length of the set of exponents for ω. Then, we have

$$
\rho_{F}= \begin{cases}q^{n-2}(q-1)^{2} \sum_{l(\omega) \text { odd }} q^{l(\omega)}, & \text { if } n \text { is even }, \\ q^{n-2}(q-1)^{2}\left(1+q-n_{C, K}+\sum_{l(\omega) \text { even }} q^{l(\omega)}\right), & \text { if } n \text { is odd } .\end{cases}
$$

(2.11) Remark. Note that ρ_{F} depends only on the Segre characteristic $s(C)$ of $C=A^{-1} B$ when every eigenvalue of C is in K. Under this assumption, we give here the complete list of ρ_{F} for $n=3$.

Segre char.	$F=\left(F_{1}, F_{2}\right)$		ρ_{F}
$[1,1,1]$	$F_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$,	$F_{2}=\omega_{1} x_{1}^{2}+\omega_{2} x_{2}^{2}+\omega_{3} x_{3}^{2}$	$q(q-1)^{2}(q-2)$
$[2,1]$	$F_{1}=2 x_{1} x_{2}+x_{3}^{2}$,	$F_{2}=2 \omega_{1} x_{1} x_{2}+x_{2}^{2}+\omega_{2} x_{3}^{2}$	$q(q-1)^{3}$
$[(1,1), 1]$	$F_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$,	$F_{2}=\omega_{1} x_{1}^{2}+\omega_{1} x_{2}^{2}+\omega_{2} x_{3}^{2}$	$q(q-1)^{2}\left(q^{2}+q-1\right)$
$[3]$	$F_{1}=2 x_{1} x_{3}+x_{2}^{2}$,	$F_{2}=2 \omega_{1} x_{1} x_{3}+\omega_{1} x_{2}^{2}+2 x_{2} x_{3}$	$q^{2}(q-1)^{2}$
$[(2,1)]$	$F_{1}=2 x_{1} x_{2}+x_{3}^{2}$,	$F_{2}=2 \omega_{1} x_{1} x_{2}+x_{2}^{2}+\omega_{1} x_{3}^{2}$	$q^{2}(q-1)^{2}(q+1)$
$[(1,1,1)]$	$F_{1}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$,	$F_{2}=\omega_{1} x_{1}^{2}+\omega_{1} x_{2}^{2}+\omega_{1} x_{3}^{2}$	$q^{2}(q-1)^{2}$

Reference

[1] Ono, T.: On certain numerical invariants of mappings over finite fields. I. Proc. Japan Acad., 56A, 342-347 (1980).

