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86. Polynomial Hamiltonians associated with
Painlevé Equations. II*

Differential equations satisfied by polynomial Hamiltonians

By Kazuo OKAMOTO
Department of Mathematics, University of Tokyo

(Communicated by Kosaku YosipaA, M. J. A., Oct. 13, 1980)

1. Introduction. The present article concerns the polynomial
Hamiltonians associated with the six Painlevé equations. The notation
of the previous note [1] will be adopted throughout this paper ; we will
refer to the Painlevé equation as P, (/J=1I, - - -, VI) and denote by H,
the polynomial Hamiltonian H,(¢; 2, 1) associated with P,, given in
Table (H) of [1]. Let &, be the set of fixed critical points of P, and
let B, be the universal covering surface of B,=P(C)—&,. Any solu-
tion (a(%), p(?)) of the Hamiltonian system with the Hamiltonian H=H,,

zz_aa_ﬂ,_
u
(v __0H
ox’
is meromorphic on B, and so is the function defined by
(2) H,@)=H,(1; 2t), p(t)).
The z-function z=r,(t) related to H,(¢) is defined by
(3) H,@0= 2 log =),

and it is holomorphic on B, ([1]).

2. Equation Py;.. Consider firstly the equation

w1y 1., X B 8

Pur 2 —7(2) -t—l +4—té‘(ﬂ+“)+’4?+’[j'
We assume that none of 7 and ¢ is zero. In [2], Painlevé showed that
Py is the limiting form of the equation Py and is transformed to Py
by the change of variables: t—t?, A—ti. Furthermore, we can derive
from H, the polynomial Hamiltonian associated with P,

Hiw % [22112 — (7]0022 + 04— 770t) n+ %7700(00 + 000)2] s

by a process of coalescence. Here the constants in H;;,, are related to
a, B, 7,0 as follows:

a=—45.0.., B=4n(6,+1), r=49i, o=—4p.
It follows from the assumption yd+0 that none of 5,(4=0, =) is zero.

*) Parti;lly supported by “The Sakkokai Foundation”.
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Proposition 1. System (1) with H=H;; governs the isomono-
dromic deformation of the linear eqmtion

BY Ly t)v 4@ y=0,

d 2
where
t 1-46 1
t 770 LI el
pi(x:t)= z i .’17 l
x:t =J?ez@2;*;‘?ze)_., tH e
P t) o = + D

It is easy to see that properties of the equation P, are derived
from those of the equation Py, and so we will mainly investigate the
equation Pyp. Let 7 (f) be the z-function related to the function
HIII’ (t)' -

Proposition 2. z.1.(t) is holomorphic on By .

We can suppose, without loss of generality, »,=1 by changing
scales of £ and 2. It will be verified by computation that 2,=p/(x—1)
satisfies the equation Py with

a= 0.0, f=—2@H0.), 1=2 3=0.

‘This fact leads us to

Proposition 3 (cf. [3], [6]). Theequation Pywith 6=01s equivalent
to the equation Py with yd+0.

Remark 1. In the case when y=0=0, by substituting 2* for 2 and
t* for ¢, we have the equation

7 ___ 1 N2 IB
A —7(2) +~2—1~52—+

that is, the equation Py, with 7—>2a, 0—28.

3. Differential equations satisfied by the Hamiltonians. By the
use of System (1), it will be verified that the function H,(¢) satisfies a
non linear differential equation of the second order. The explicit form
of this equation E; is given below in Table (E), where we suppose that
747#0. First we introduce the integer N(J) and the auxiliary constants
v, (k=1, - .-, N(J)) for the equation P, as follows:

P, N(D=1; u,=a+-;—;
R 1 1
Py NAID=2; yl=E(00+0oo), V2=E(0o—‘0oo),

_=(%+U1+V2)(%—'V1+Vz) >

Py N(AI=2; u1=%(oo+am), »2=—;~(ao—em);
Py N(IV)=2; vi=0, v,=0.;
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P, N(V)=3; u=6, u2=%(ao+al+em>, »s=§(ao+ol—ow);
P, NIV)=4: vl=%(00+01), uz—_—%(ao—al),

»3=%(0,—1+0m), y4=%(at—1—aw),

a,(v)=the j-th elementary symmetric polynomial
Of vy, vy, Vay Vs
d()=that of vy, vy, v,.
Table (E):
P, h=H\®),
E, WY +4( Y +2(th' —h)=0:
Pn h= Hn(t) ’
Enx (') +4W) 420t —h)— (é* v1>2 =0:
2
P h=t'HIII(t)+ (%-"l'yl‘i'“z) ’
Em  [GR7)+4@R — {(R') — 16930 — h—D)} ]
16 (L 2t — ) =0
Pm' h=t. HIII'(t),
Epy  @R") =10 +v)h" — g P +4R0 (B — . )G —h) =0
PIV h= Hlv(t),
En (W) —40W —h)*+40 (0 +2v) (W +2v,) =0
Py h=t- Hv(t) +vpvs,
EV (Ulth//)z — [ﬂ?(th/ — h) — z(h/)z - 771(”1 +v,+ ”s)h,]z
+4r' (W + 771”1) n + 7]1”2) ' + 711’3) =0:

P, h——-t(t—l)-HVI(t)+ag(u)t—§oz(u),

Ey  WIRE-DR'F+[N{2h—(2t-D R} +0,0))F= II:II (7 +23).

We can represent a solution (A(¢), u(¢)) of System (1) with H=H,
by the function =h(¢) and its derivatives; in fact we have the follow-
ing

Table (R):

P, A=—N, pu=-—"n":
144
P, z=3%};ﬂ., p=—2W':
Py a=dy,- T Zi}}/f_*;:’;i‘/h"th
_ 1 WVh—t—th" .
"a 2kt
Py A=— Wo[th//‘l'%ﬂoovx"(V1+Vz)h/] , 1

=N
21 (W — o) e
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P, a=N'-2@W—lh) - _ K20 —h)
2(1 +2v,) 40 +2v))
P, i= bR —7iER — 1) + 2(R) + 9,1 v+
2(1' + 771’)2)(17', + mvs)
y= nth” +9i@Ah — h) —2(W') — 9, + v+l
2771(h/ + 771”1)

1
P == [(y+v)B+ R —vp,)C],
. 2 5 [(vy+v) (W —vp)C1]

AQ—Dp= -'-'2%{ [ = (W —a3()B + (01 —ai())C],

A=W +)DW 419,
B=tt—1h" +0,0)h —0a,(v),
C=2(th'—h).
By means of this table, we obtain from a solution Z(¢) of the non linear
differential equation E; a pair of functions (A(¢), x(¢)), which is a solu-
tion of System (1) with the Hamiltonian H=H,. Therefore, according
to (8) we arrive at
Theorem 1. z,(t) satisfies a non linear differential equation of
the third order and reciprocally a solution (A(t), p(t)) of System (1) are
determined by this function and its derivatives.
Remark 2. Putting for the equation P,y

2
g=h+/’lg—<-;—+v1+v2) ’

‘we obtain the following expressions ;
(tg” — 9y —4l,+v) g —dm.vitl=9'(9' — 8y.t)(4g—2tg"),
1= — 4770 _»(1/2)1’59”— (1/?"‘”1 +”2)g,+8%77ooV1t , #=>_:_l__ g,
9" —8yi.. 47,
4, Representation of A(¥). Now we state the theorem:
Theorem 2. For Py, .-, Py, there exist rational functions,
R,(t;2,2) (1=1,2) of (t,4,2) and a(t), b(t) of t such that
(i) for any solution A(t) of P,, the functions

r,(t)=exp f Rz(s 3 A(8), da (s))ds (t=1,2)

ds
are holomorphic on B, ;
(i) a(t), b(t) are holomorphic on B; and
_ a Tz(t)

(4) a(®)a(t)+ b(t)—ﬁt" log - R

This fact was firstly remarked by P. Painlevé [5] for P; and Py,
without using the Hamiltonian structure. A solution A(t) of P, and
the corresponding z-function z(¢) depend on the constants v=(,)
(=1, ---,N())) and »=(y,) (4=0,0,1). For simplicity of notation,
‘we represent this dependence by z(v; ), 2(v; 5). We can prove Theorem
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2 by taking as z,(t) two r-functions of P, with different values of para-
meters and as R,(¢; 2, ) polynomial Hamiltonians of the corresponding
equation. In fact the expression (4) for 2(t)=2(v; ») is given as follows :

P, a(t) b(®) 7,(t) 7,(?) -
II 1 0 z(v,) (v, —1)

II1 2., 4.t (V1 v 5 90y 7.0) (V2 V15 N0y —7e0)
Ir ,?;,. &%’i (v, —v,— 15 7) t+1, —v5 )
IV 1 0 (v, v,) 7(y;, v, +1)

V yzft:??" 0 ‘L'())l, Vo, Vs+1 ; 01) T(V], 1)2+1, V3 ; 771)
VI | 5250 chpmntly)  csmudD

Remark 3. We obtain the following expressions for Py, Py, Py
and Py;:

27, d t(v+1,u;7)
P 29,4, v, ; /| T log ~*2t L2722 7 .
o 2pAl v D) F Ay, ve5m)  dt & (v, v25 1)
P %o _ vi+v,+1 _ d log - T(V1+1 Vz‘l‘l ﬂ) ;
vy v25 1) t Cdt sy v25 )
P R 1= i lo tv, v +1,0,+1; 7771)” :
v 1—- /2(”1, Vg, Vg 3 7]1) Skl dt £ T(Vu Yoy V3 5 771)
P, o V:«L“ﬁ’fgj‘_l ~+C(t)—i— log (v, vy, ¥3+1, v, +1) ,
t A, Vay Y3y Vy) (V15 Yoy Vg, 1))
C(t) ”1+92+V3+V4+1 -+ ﬁ__Vz+Vs+V4+1
t—1

Remark 4. In [4], another representation of a solution A(t) by
the use of r-functions is given for each of the equations P,.
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