32. An Approximate Positive Part of Essentially Self-Adjoint Pseudo-Differential Operators. II

By Daisuke Fujiwara
Department of Mathematics, University of Tokyo
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1981)

§ 1. Introduction. Let $\alpha(x, \xi)$ be a real valued symbol function belonging to the class $S_{10}^{1}\left(\mathrm{R}^{n}\right)$ of Hörmander [2], that is, for any pair of multi-indices α and β, we have

$$
\sup \left(1+|\xi|^{2}\right)^{(|\beta|-1) / 2}\left|D_{x}^{\alpha} D_{\xi}^{\beta} a(x, \xi)\right|<\infty,
$$

where we used usual multi-index notation. As the continuation of the previous note [1], we treat the Weyl quantization $a^{w}(x, D)$ of it, which is defined as

$$
\begin{equation*}
a^{w}(x, D) u(x)=\left(\frac{1}{2 \pi}\right)^{n} \int_{\mathrm{R}^{n}} \int_{\mathrm{R}^{n}} a\left(\frac{x+y}{2}, \xi\right) e^{i(x-y) \cdot \xi} u(y) d y d \xi . \tag{1.1}
\end{equation*}
$$

Cf. Weyl [6], Voros [5], and Hörmander [3].
Let (,) and || || denote the inner product and the norm, respectively, in $L^{2}\left(\mathrm{R}^{n}\right)$. In the previous note, we reported the following

Theorem 1. Let ε be an arbitrary small positive number. Then, using the symbol function $a(x, \xi)$, we can construct three bounded linear operators π^{+}, π^{-}and R in $L^{2}\left(\mathbf{R}^{n}\right)$ with the following properties:

1) Both π^{+}and π^{-}are non-negative symmetric operators.
2) There exists a positive constant C such that we have

$$
\begin{array}{r}
\operatorname{Re}\left(\pi^{+} \alpha^{w}(x, D) u, u\right) \geq-C\|u\|^{2} \\
-\operatorname{Re}\left(\pi^{-} \alpha^{w}(x, D) u, u\right) \geq-C\|u\|^{2} \tag{1.3}
\end{array}
$$

for any $u \in \mathcal{S}\left(\mathrm{R}^{n}\right)$.
3)

$$
\begin{aligned}
& \pi^{+}+\pi^{-}=I+R, \quad\|R\|<\varepsilon, \quad \text { and } \\
& \left\|a^{w}(x, D) R\right\|<\infty, \quad\left\|R a^{w}(x, D)\right\|<\infty .
\end{aligned}
$$

Let

$$
\mathfrak{S}^{+}(\alpha)=\{(x, \xi) \mid \alpha(x, \xi) \geq 0\}
$$

and

$$
\mathfrak{C}^{-}(a)=\{(x, \xi) \mid a(x, \xi) \leq 0\} .
$$

We call $\mathfrak{C}^{\circ}(\alpha)=\mathfrak{C}^{+}(\alpha) \cap \mathfrak{C}^{-}(\alpha)$ the characteristic set of a. The aim of this note is to show the following

Theorem 2. Let $a(x, \xi)$ and $p(x, \xi)$ be two real valued functions in $S_{10}^{1}\left(\mathrm{R}^{n}\right)$. Suppose the following two conditions hold:
(A) $\mathfrak{C}^{+}(a) \subset \mathfrak{C}^{+}(p), \quad \mathfrak{c}^{-}(a) \subset \mathfrak{C}^{-}(p)$.
(B) There exists a positive constant C such that

$$
\begin{align*}
& \left|\operatorname{grad}_{x} p(x, \xi)\right| \leq C\left|\operatorname{grad}_{x} a(x, \xi)\right| \tag{1.4}\\
& \left|\operatorname{grad}_{\xi} p(x, \xi)\right| \leq C\left|\operatorname{grad}_{\xi} a(x, \xi)\right| \tag{1.5}
\end{align*}
$$

at every $(x, \xi) \in \mathbb{G}^{0}(a)$. Let π^{+}, π^{-}and R be the linear operators constructed for $a^{w}(x, D)$ in Theorem 1. Then we have
(1.6) $\quad \operatorname{Re}\left(\pi^{+} p^{w}(x, D) u, u\right) \geq-C\|u\|^{2}$
(1.7) $\quad-\operatorname{Re}\left(\pi^{-} p^{w}(x, D) u, u\right) \geq-C\|u\|^{2} \quad$ for any $u \in \mathcal{S}\left(\mathbf{R}^{n}\right)$
and

$$
\left\|R p^{w}(x, D)\right\|<\infty, \quad\left\|p^{w}(x, D) R\right\|<\infty
$$

with some positive constant C.
§ 2. Sketch of the proof of Theorem 2. Let $\left\{Q_{\nu}\right\}_{\nu=1}^{\infty}$ be the partition of $\mathrm{R}_{x}^{n} \times \mathrm{R}_{\xi}^{n}$ into closed rectangles $Q_{\nu}=Q_{\nu x} \times Q_{\nu \xi}$ in [1]. Let δ_{μ} $=$ diam. of $Q_{\mu x}$ and $\varepsilon_{\mu}=$ diam. of $Q_{\mu \xi}$. Let $\varphi_{\nu}(x, \xi)$ and $\psi_{\nu}(x, \xi)$ be functions as in [1]. At every point $w=(x, \xi)$ in the interior of the rectangle Q_{μ}, we assign the quadratic form

$$
g_{w}: \mathrm{R}_{x}^{n} \times \mathrm{R}_{\xi}^{n} \ni(t, \tau) \longrightarrow g_{w}(t, \tau)=\delta_{\mu}^{-2}|t|^{2}+\varepsilon_{\mu}^{-2}|\tau|^{2}
$$

The correspondence $w \rightarrow g_{w}$ is a discontinuous σ-temperate Riemannian metric in the sense of Hörmander [3]. This metric g_{w} is equivalent to the metric g_{w} in [1]. Following [3], we define

$$
\begin{equation*}
g_{w}^{\sigma}(t, \tau)=\varepsilon_{\mu}^{2}|t|^{2}+\delta_{\mu}^{2}|\tau|^{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
h(w)=\delta_{\mu}^{-1} \varepsilon_{\mu}^{-1} \tag{2.2}
\end{equation*}
$$

if $w=(x, \xi)$ is an interior point of Q_{μ}. We showed in [1] that $a \in S\left(h^{-1}, g\right)$ and both sets $\left\{\varphi_{\mu}\right\},\left\{\psi_{\mu}\right\}$ are bounded in $S(1, g)$. (See Hörmander [3] for the definition of the class $S\left(h^{-1}, g\right)$ and $S(1, g)$.)

We can prove
Proposition 1. Under the assumptions (A) and (B), the function $p(x, \xi)$ belongs to the class $S\left(h^{-1}, g\right)$, i.e., for any multi-indices α and β, we have the estimate

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} p(x, \xi)\right| \leq C_{\alpha \beta} \delta_{\mu}^{1-|\alpha|} \varepsilon_{\mu}^{1-|\beta|} \tag{2.3}
\end{equation*}
$$

if $(x, \xi) \in 4 Q_{\mu}$.
Corresponding to Lemma 2.1 of [1], we can prove
Lemma 2. Let $h_{\mu}=\delta_{\mu}^{-1} \varepsilon_{\mu}^{-1}$. Let $\pi_{\mu}^{+}, \pi_{\mu}^{-}, R_{\mu}$ and ϕ_{μ} be as in Lemma 2.1 of [1]. Then,
(i) There exists a positive constant C such that we have

$$
\begin{equation*}
\operatorname{Re}\left(\pi_{\mu}^{+} p \psi_{\mu}^{w}(x, D) \varphi_{\mu}^{w}(x, D) u, \varphi_{\mu}^{w}(x, D) u\right) \geq-C N^{2}\left\|\varphi_{\mu}^{w}(x, D) u\right\|^{2}, \tag{2.4}
\end{equation*}
$$

(2.5) $\quad-\operatorname{Re}\left(\pi_{\mu}^{-} p \psi_{\mu}^{w}(x, D) \varphi_{\mu}^{w}(x, D) u, \varphi_{\mu}^{w}(x, D) u\right) \geq-C N^{2}\left\|\varphi_{\mu}^{w}(x, D) u\right\|^{2}$, for any u in $\mathcal{S}\left(\mathbf{R}^{n}\right)$.

Sketch of the proof of Lemma 2. In the case (I) of Lemma 1.2 of [1], we have

$$
\begin{equation*}
|p(x, \xi)| \leq C N^{2} \quad \text { for any }(x, \xi) \in 4 Q_{\mu} \tag{2.6}
\end{equation*}
$$

because of assumption (A) and Proposition 1. This proves (2.4) and (2.5). In the case (II) of Lemma 1.2 of [1], we have

$$
p(x, \xi) \geq 0 \quad \text { for any }(x, \xi) \in 4 Q_{\mu}
$$

because of assumption (A). Hence (2.4) and (2.5) hold in this case. Case (III) of Lemma 1.2 of [1] can be treated in the similar manner.

Lemma 3. If case (IV) ${ }_{k}$ of Lemma 2.1 of [1] holds, then there exists a non-negative function $q(x, \xi)$ of $(x, \xi) \in 4 Q_{\mu}$ such that

$$
\begin{equation*}
p(x, \xi)=q(x, \xi) a(x, \xi) \quad \text { for any }(x, \xi) \in 4 Q_{\mu} . \tag{2.7}
\end{equation*}
$$

For any multi-indices α and β, we have

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} q(x, \xi)\right| \leq C_{\alpha \beta} \delta_{\mu}^{-|\alpha|} \varepsilon_{\mu}^{-|\beta|} \quad \text { for }(x, \xi) \in 4 Q_{\mu} . \tag{2.8}
\end{equation*}
$$

Let $\chi_{\mu}(x, \xi)=\psi_{\mu}(x, \xi)^{1 / 2}$, which we may assume of class C^{∞}. The function $q \chi_{\mu}$ belongs to $S(1, g)$. We define the operator $\left(q \chi_{\mu}\right)^{w}(x, D)$ and we have

$$
\left(p \psi_{\mu}\right)^{w}(x, D)=\left(q \chi_{\mu}\right)^{w}(x, D)\left(a \chi_{\mu}\right)^{w}(x, D)+r^{w}(x, D)
$$

where $r_{\mu}=q \chi_{\mu} a \chi_{\mu}-\left(q \chi_{\mu}\right) \#\left(a \chi_{\mu}\right)$. Since $q \chi_{\mu}(x, \xi) \geq 0$, we can apply the technique of Nirenberg Trévès (cf. Lemma 3.1 of [4]). Thus, in the case (IV) ${ }_{k}$ of Lamma 1.2, we can prove (2.4) and (2.5).

Similar discussions prove (2.4) and (2.5) in the case (V) $)_{k}$ of Lemma 2.1 in [1].

Theorem 2 follows from Lemma 2 if we can prove that the operators

$$
\begin{align*}
& R_{1}^{\prime}=\sum_{\mu} \varphi_{\mu}^{w}(x, D) \pi_{\mu}^{+}\left[\varphi_{\mu}^{w}(x, D), p \psi_{\mu}^{w}(x, D)\right] \tag{2.9}\\
& R_{2}^{\prime}=\sum_{\mu} \varphi_{\mu}^{w}(x, D) \pi_{\mu}^{+} \varphi_{\mu}^{w}(x, D)\left(p^{w}(x, D)-\left(p \psi_{\mu}\right)^{w}(x, D)\right) \tag{2.10}
\end{align*}
$$

are bounded (cf. (3.7) and (3.8) of [1]). In order to prove the boundedness of these operators as well as estimates (3.5) and (3.9) of [1], we use the fundamental estimate of Hörmander, which is implicit in [3]. Let $p_{\mu}(x, \xi)$ and $p_{\nu}(x, \xi)$ be C^{∞} functions with compact supports. For any integer $L \geq 0$ and $w=(x, \xi) \in \mathbf{R}_{x}^{n} \times \mathbf{R}_{\xi}^{n}$, we put
(2.11) $p_{\mu \nu}^{L}(x, \xi)$

$$
=p_{\mu} \# p_{\nu}(w)-\left.\sum_{j<L} \frac{1}{j!}\left(\frac{i}{2} \sigma\left(D_{x}, D_{\xi} ; D_{y}, D_{\eta}\right)\right)^{j} p_{\mu}(x, \xi) p_{\nu}(y, \eta)\right|_{(y, \eta)=(x, \xi)}
$$

For any $w=(x, \xi) \in \mathbf{R}_{x}^{n} \times \mathbf{R}_{\xi}^{n}$, we put

$$
d_{\mu}(w)=\inf _{w^{\prime} \in(15 / 8) Q_{\mu}} g_{w}^{\sigma}\left(w-w^{\prime}\right) .
$$

Then Hörmander's estimate can be stated as follows :
Lemma 4. Let $p_{\mu}(x, \xi)$ and $p_{\nu}(x, \xi)$ be C^{∞} functions. Suppose that supp $p_{\mu} \subset(7 / 4) Q_{\mu}$ and supp $p_{\nu} \subset(7 / 4) Q_{\nu}$. Then, for any non-negative integers k and l, there exist positive constants C, μ and M such that for any $w=(x, \xi) \in \mathbf{R}^{n} \times \mathbf{R}^{n}$

$$
\begin{align*}
\left|p_{\mu \nu}^{L}\right|_{i}^{g}(w) \leq & C h(w)^{L}\left(1+d_{\mu}(w)+d_{\nu}(w)\right)^{-k} \tag{2.12}\\
& \times \sup _{j_{1}+j_{2} \leq M}\left[\sup _{w_{1}}\left|p_{\mu}\right|_{j_{1}}^{g}\left(w_{1}\right)\right] \cdot\left[\sup _{w_{2}}\left|p_{\nu}\right|_{j_{2}}^{g}\left(w_{2}\right)\right] .
\end{align*}
$$

See [3] for the definition of the seminorm $\left|p_{\mu}\right|_{j}^{q}(w)$.
In taking summation with respect to μ, we use
Lemma 5. There exists a positive number M such that if $k>M$
we have
(2.13)

$$
\sum_{\mu}\left(1+A+d_{\mu}(w)\right)^{-k}<C(1+A)^{M-k}
$$

for any positive number A. Here C is independent of A.

References

[1] Fujiwara, D.: An approximate positive part of essentially self-adjoint pseudo-differential operators. I. Proc. Japan Acad., 57A, 1-6 (1981).
[2] Hörmander, L.: Pseudo-differential operators and hypo-elliptic equations. Proc. Symp. Pure Math., 10, 118-196 (1966).
[3] -: The Weyl calculus of pseudo-differential operators. Comm. Pure Appl. Math., 32, 359-443 (1979).
[4] Nirenberg, L., and Trévès, F.: On local solvability of linear partial differential equations, part II, Sufficient conditions. ibid., 23, 459-510 (1970).
[5] Voros, A.: An algebra of pseudo-differential operators and the asymptotics of quantum mechanics. J. Funct. Anal., 29, 104-132 (1978).
[6] Weyl, H.: Theory of Groups and Quantum Mechanics. Dover (1950).

