65. A Construction of Lie-Graded Algebras by Graded Generalized Jordan Triples of Second Order

By Yoshiaki Kakilchi
Department of Mathematics, Faculty of Engineering, Toyo University

(Communicated by Shokichi Ifanaga, m. J. a., May 12, 1981)

Introduction. During the last few years the theory of graded algebras and graded triples were developed both in mathematics and physics. In our previous paper [5], from a two dimensional associative triple system W and any generalized Jordan triple system \mathfrak{J} of second order we made a generalized Jordan triple system $W \otimes \mathfrak{F}$ of second order which induced the Lie triple system, and we had a Lie algebra as a standard embedding of the Lie triple system. In this paper we generalize the construction of Lie algebras in [5] to Z - or Z_{2}-graded case. That is, from the same associative triple system W as in [5] and any graded generalized Jordan triple \mathfrak{F} of second order, we make a graded generalized Jordan triple $W \otimes \mathfrak{J}$ of second order which induces the Lie-graded triple, and we have a Lie-graded algebra as a standard embedding of the induced Lie-graded triple (Theorem 1).

1. Let Δ be Z or Z_{2} and let $\mathfrak{B}=\oplus_{i \in \Delta} \mathfrak{N}_{i}$ be a Δ-graded vector space. Throughout the paper we assume that each vector subspace \mathfrak{B}_{i} of degree i is finite dimensional and x_{i} is an element in \mathfrak{B}_{i}. And we also assume that the characteristic of the base field Φ is different from 2 or 3. An endomorphism E_{i} of \mathfrak{B} is called a graded endomorphism of degree i if $E_{i} \mathfrak{B}_{j} \subset \mathfrak{B}_{i+j}$ for all $j \in \Delta$ and the vector space of such endomorphisms is denoted by $\operatorname{End}_{i} \mathfrak{O}$.

Let $₫ \mathscr{G}=\oplus_{i \in \Delta} \mathscr{S}_{i}$ be a Δ-graded vector space with graded bilinear product $\left[x_{i}, y_{j}\right]_{\mp}$ satisfying the following conditions:
(1) $\left[x_{i}, y_{j}\right]_{\mp}+(-1)^{i j}\left[y_{j}, x_{i}\right]_{\mp}=0$,
(2) $(-1)^{i k}\left[\left[x_{i}, y_{j}\right]_{\mp}, z_{k}\right]_{\mp}+(-1)^{j i}\left[\left[y_{j}, z_{k}\right]_{\mp}, x_{i}\right]_{\mp}+(-1)^{k j}\left[\left[z_{k}, x_{i}\right]_{\mp}, y_{j}\right]_{\mp}=0$, then \mathscr{F}_{5} is called a Δ-Lie-graded algebra ($\Delta-\mathrm{LGA}$) or a Δ-Lie superalgebra (cf. [3], [4], [8]).
2. A Δ-graded vector space $\mathfrak{B}=\oplus_{i \in \Delta} \mathfrak{B}_{i}$ with a graded trilinear product $\left\{x_{i} y_{j} z_{k}\right\} \in \mathfrak{B}_{i+j+k}$ is called a Δ-graded triple (4 -GT). An endomorphism $D \in \operatorname{End}_{i} \mathfrak{B}$ is called a graded derivation of degree i of \mathfrak{B} if

$$
D\left\{x_{j} y_{k} z_{l}\right\}=\left\{D x_{j} y_{k} z_{l}\right\}+(-1)^{i j}\left\{x_{j} D y_{k} z_{l}\right\}+(-1)^{i(j+k)}\left\{x_{j} y_{k} D z_{l}\right\} .
$$

Let $\operatorname{Der}_{i} \mathfrak{B}$ be the vector space spanned by these graded derivations of degree i and $\operatorname{Der} \mathfrak{B}=\oplus_{i \in \Lambda} \operatorname{Der}_{i} \mathfrak{B}$. For any two graded derivations $D_{i} \in \operatorname{Der}_{i} \mathfrak{B}, \quad D_{j} \in \operatorname{Der}_{j} \mathfrak{B}$ their graded commutator $\left[D_{i}, D_{j}\right]_{\mp}=D_{i} D_{j}$
$-(-1)^{i j} D_{j} D_{i}$ is a graded derivation of degree $i+j$. Hence Der \mathfrak{B} is a Δ-Lie-graded algebra ([10]).

Let $\mathfrak{I}=\oplus_{i \in \Delta} \mathfrak{I}_{i}$ be a Δ-GT with a product $\left[x_{i} y_{j} z_{k}\right]=D\left(x_{i}, y_{j}\right) z_{k}$ satisfying the conditions:

$$
\begin{equation*}
\left[x_{i} y_{j} z_{k}\right]+(-1)^{i j}\left[y_{j} x_{i} z_{k}\right]=0, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{i k}\left[x_{i} y_{j} z_{k}\right]+(-1)^{j i}\left[y_{j} z_{k} x_{i}\right]+(-1)^{k j}\left[z_{k} x_{i} y_{j}\right]=0, \tag{4}
\end{equation*}
$$

(5) $\left[D\left(x_{i}, y_{j}\right), D\left(u_{k}, v_{l}\right)\right]_{\mp}=D\left(\left[x_{i} y_{j} u_{k}\right], v_{l}\right)+(-1)^{(i+j) k} D\left(u_{k},\left[x_{i} y_{j} v_{l}\right]\right)$.

Then \mathfrak{I} is called a Δ-Lie-graded triple (Δ-LGT) which is a graded generalization of Lie triple system ([10]). Any Δ-LGA becomes a Δ-LGT with respect to a triple product $\left[x_{i} y_{j} z_{k}\right]=\left[\left[x_{i}, y_{j}\right]_{\mp}, z_{k}\right]_{\mp}$. For a Δ-LGT $\mathfrak{I}=\oplus_{i \in \Delta} \mathscr{I}_{i}$ the condition (5) shows that an endomorphism $D\left(x_{i}, y_{j}\right)$ is a graded derivation of degree $i+j$ of \mathfrak{I} which is called an inner derivation. Let $\operatorname{Inder}_{i} \mathfrak{T}$ be a vector space spanned by inner derivations of degree i in Δ-LGT \mathfrak{T}, then $D(\mathfrak{T}, \mathfrak{T})=\oplus_{i \in \Delta} \operatorname{Inder}_{i} \mathfrak{T}$ becomes a Δ-Lie-graded subalgebra of Der \mathfrak{T}. This $D(\mathfrak{T}, \mathfrak{T})$ is called a Δ-LGA of graded inner derivations in \mathfrak{I}. And the vector space direct sum $D(\mathfrak{T}, \mathfrak{I}) \oplus \mathfrak{I}$ becomes a Δ-LGA relative to the following graded product:

$$
\left[D_{i}+x_{i}, D_{j}+y_{j}\right]_{\mp}:=\left[D_{i}, D_{j}\right]_{\mp}+D\left(x_{i}, y_{j}\right)+D_{i} y_{j}-(-1)^{i j} D_{j} x_{i}
$$

for $D_{i} \in \operatorname{Inder}_{i} \mathfrak{I}, D_{j} \in \operatorname{Inder}_{j} \mathfrak{I}, x_{i} \in \mathfrak{I}_{i}, y_{j} \in \mathfrak{T}_{j}$. This Δ-LGA $D(\mathfrak{T}, \mathfrak{T})$ $\oplus \mathfrak{I}$ is called the standard embedding Δ-LGA of Δ-LGT \mathfrak{T} ([10]).
3. Let W be a two dimensional triple system with product $\{a b c\}$ $=l(a, b) c$ which has a basis $\left\{e_{1}, e_{2}\right\}$ such that $\left\{e_{1} e_{1} e_{1}\right\}=\alpha e_{1},\left\{e_{1} e_{1} e_{2}\right\}=\left\{e_{1} e_{2} e_{1}\right\}$ $=\left\{e_{2} e_{1} e_{1}\right\}=\alpha e_{2},\left\{e_{1} e_{2} e_{2}\right\}=\left\{e_{2} e_{1} e_{2}\right\}=\left\{e_{2} e_{2} e_{1}\right\}=\beta e_{1},\left\{e_{2} e_{2} e_{2}\right\}=\beta e_{2}$, where $\alpha, \beta \in \Phi$. Then W is a commutative associative triple system (ATS) (cf. [7]) and is also a Jordan triple system. In the ATS W, we have

$$
\begin{equation*}
l(a, b) l(c, d)=l(c, d) l(a, b), \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
l(a, b) l(c, d)=l(l(a, b) c, d)=l(c, l(b, a) d) \tag{7}
\end{equation*}
$$

Let $\mathfrak{F}=\oplus_{i \in \Delta} \widetilde{\Im}_{i}$ be a Δ-GT with a product $\left\{x_{i} y_{j} z_{k}\right\}$. But $\left\{x_{i} y_{j} z_{k}\right\}$ $=L\left(x_{i}, y_{j}\right) z_{k}$, and

$$
K\left(x_{i}, y_{j}\right) z_{k}=(-1)^{j k}\left\{x_{i} z_{k} y_{j}\right\}-(-1)^{i(j+k)}\left\{y_{j} z_{k} x_{i}\right\}
$$

Then we have

$$
\begin{align*}
& {\left[L\left(x_{i}, y_{j}\right), L\left(u_{k}, v_{l}\right)\right]_{\mp}} \tag{8}\\
& \quad=L\left(\left\{x_{i} y_{j} u_{k}\right\}, v_{l}\right)-(-1)^{(i+j) k+i j} L\left(u_{k},\left\{y_{j} x_{i} v_{l}\right\}\right), \\
& \quad K\left(K\left(x_{i}, y_{j}\right) u_{k}, v_{l}\right) \tag{9}\\
& \quad=K\left(x_{i}, y_{j}\right) L\left(u_{k}, v_{l}\right)+(-1)^{(i+j)(k+l)+k l} L\left(v_{l}, u_{k}\right) K\left(x_{i}, y_{j}\right) .
\end{align*}
$$

Then, \mathfrak{F} is called a Δ-graded generalized Jordan triple of second order (4 -GGJT of $2^{\text {nd }}$ order) which is a graded generalization of a generalized Jordan triple system of $2^{\text {nd }}$ order due to I. L. Kantor ([2], [6], [11]).

Using the identities (6) and (7), we have
 order, define a graded trilinear product in $W \otimes \widetilde{\Im}=\oplus_{i \in \Lambda}\left(W \otimes \mathfrak{S}_{i}\right)$ by

$$
\left\{a \otimes x_{i} b \otimes y_{j} c \otimes z_{k}\right\}:=\{a b c\} \otimes\left\{x_{i} y_{j} z_{k}\right\}
$$

for $a, b, c \in W$ and $x_{i} \in \mathfrak{J}_{i}, y_{j} \in \mathfrak{J}_{j}, z_{k} \in \mathfrak{I}_{k}$. Then $W \otimes \mathfrak{F}$ becomes a Δ GGJT of $2^{\text {nd }}$ order.

It is known that a Δ-GGJT $\mathfrak{J}=\oplus_{i \in \Delta} \widetilde{J}_{i}$ of $2^{\text {nd }}$ order with a product $\left\{x_{i} y_{j} z_{k}\right\}$ becomes a Δ-LGT relative to a new product ([1]):
$\left[x_{i} y_{j} z_{k}\right]:=\left\{x_{i} y_{j} z_{k}\right\}-(-1)^{i j}\left\{y_{j} x_{i} z_{k}\right\}+(-1)^{j k}\left\{x_{i} z_{k} y_{j}\right\}-(-1)^{i(j+k)}\left\{y_{j} z_{k} x_{i}\right\}$.
We denote this Δ-LGT by \mathfrak{S}^{*} and call an induced Δ-LGT (from \mathfrak{J}). For the Δ-GGJT $W \otimes \mathfrak{F}$ of $2^{\text {nd }}$ order in Lemma 1, the Δ-LGT product in $(W \otimes \mathscr{S})^{*}$ is as follows: $\left[a \otimes x_{i} b \otimes y_{j} c \otimes z_{k}\right]=\{a b c\} \otimes\left[x_{i} y_{j} z_{k}\right]$ or $D\left(a \oplus x_{i}\right.$, $\left.b \otimes y_{j}\right)\left(c \otimes z_{k}\right)=l(a, b) c \otimes D\left(x_{i}, y_{j}\right) z_{k}$, where $a, b, c \in W$ and $x_{i} \in \mathfrak{J}_{i}, y_{j} \in \mathfrak{J}_{j}$, $z_{k} \in \mathfrak{J}_{k}$. Let \mathfrak{D} be the Δ-LGA of graded inner derivations $D\left(a \otimes x_{i}\right.$, $\left.b \otimes y_{j}\right)$ in the Δ-LGT $(W \otimes \mathfrak{S})^{*}$. Then $\mathfrak{G}(W, \mathfrak{F})=\mathfrak{D} \oplus(W \otimes \mathfrak{F})^{*}$ is the standard embedding Δ-LGA of the Δ-LGT $(W \otimes \mathscr{N})^{*}$. By the property of the product in $(W \otimes \mathfrak{F})^{*}$ we have

$$
\operatorname{Inder}_{i}(W \otimes \mathfrak{F})^{*}=l(W, W) \otimes \operatorname{Inder}_{i} \mathfrak{S}^{*}
$$

where $l(W, W)$ is the vector space spanned by $\{l(a, b): a, b \in W\}$. If $\alpha \neq 0$ or $\beta \neq 0$ in W, then $\left\{i d_{W}, l\left(e_{1}, e_{2}\right)\right\}$ is a basis of $l(W, W)$, where $i d_{W}$ is the identity endomorphism in W. Hence, we have

$$
\mathfrak{D}=i d_{W} \otimes D(\mathfrak{F}, \mathfrak{F}) \oplus l\left(e_{1}, e_{2}\right) \otimes D(\mathfrak{F}, \mathfrak{\Im})
$$

where $D(\mathfrak{J}, \mathfrak{F})$ is a Δ-LGA of graded inner derivations in \mathfrak{J}^{*}.
Then we obtain
Theorem 1. If $\alpha \neq 0$ or $\beta \neq 0$ in the ATS W, then

$$
\mathfrak{\Im}(W, \mathfrak{F})=i d_{w} \otimes D(\mathfrak{S}, \mathfrak{F}) \oplus l\left(e_{1}, e_{2}\right) \otimes D(\mathfrak{S}, \mathfrak{S}) \oplus(W \otimes \mathfrak{F})^{*}
$$

is the standard embedding Δ-LGA of the Δ-LGT $(W \otimes \mathfrak{F})^{*}$, and $i d_{W} \otimes D(\mathfrak{J}, \mathfrak{J}) \oplus l\left(e_{1}, e_{2}\right) \otimes D(\mathfrak{J}, \mathfrak{J})$
is a Δ-Lie-graded subalgebra of $\mathscr{G}(W, \mathfrak{F})$ satisfying the following graded commutator relations:

$$
[\mathfrak{R}, \mathfrak{R}]_{\mp} \subset \mathfrak{R}, \quad[\mathfrak{M}, \mathfrak{M}]_{\mp} \subset \mathfrak{R}, \quad[\mathfrak{R}, \mathfrak{M}]_{\mp} \subset \mathfrak{M},
$$

where $\mathfrak{R}=i d_{w} \otimes D(\mathfrak{F}, \mathfrak{F}), \mathfrak{M}=l\left(e_{1}, e_{2}\right) \otimes D(\mathfrak{F}, \mathfrak{F})$.
4. Let $\mathfrak{J}=\oplus_{i \in \Delta} \mathfrak{I}_{i}$ be a Δ-GGJT of $2^{\text {nd }}$ order. Now we consider the vector space direct sum $\mathfrak{J} \oplus \mathfrak{J}=\oplus_{i \in \Delta}\left(\mathfrak{J}_{i} \oplus \mathfrak{F}_{i}\right)$, which is spanned by $\left\{x_{i} \oplus \bar{x}_{i}: x_{i}, \bar{x}_{i} \in \mathfrak{J}_{i}, i \in \Delta\right\}$. Then we denote an element $x_{i} \oplus \bar{x}_{i}$ in $\mathfrak{J} \oplus \widetilde{\mathcal{S}}$ by $\binom{x_{i}}{\bar{x}_{i}}$ and define a triple product in $\mathfrak{J} \oplus \mathfrak{J}$ by

$$
\begin{align*}
& \left\{\binom{x_{i}}{\bar{x}_{i}}\binom{y_{j}}{\bar{y}_{j}}\binom{z_{k}}{\bar{z}_{k}}\right\}: \tag{10}\\
& \quad=\binom{\alpha\left\{x_{i} y_{j} z_{k}\right\}+\beta\left\{x_{i} \bar{y}_{j} \bar{z}_{k}\right\}+\varepsilon \beta\left\{\bar{x}_{i} y_{j} \bar{z}_{k}\right\}+\beta\left\{\bar{x}_{i} \bar{y}_{j} z_{k}\right\}}{\alpha\left\{x_{i} y_{j} \bar{z}_{k}\right\}+\varepsilon \alpha\left\{x_{i} \bar{y}_{j} z_{k}\right\}+\alpha\left\{\bar{x}_{i} y_{j} z_{k}\right\}+\beta\left\{\bar{x}_{i} \bar{y}_{j} \bar{z}_{k}\right\}},
\end{align*}
$$

where α, β are the elements of the base field Φ and $\varepsilon= \pm 1$. Then the product defined above is a graded triple product in $\mathfrak{J} \oplus \Im$. By straightforward calculations, we have

Theorem 2. Let \mathfrak{J} be a Δ-GGJT of $2^{\text {nd }}$ order, then $\mathfrak{J} \oplus \mathfrak{J}$ becomes
a Δ-GGJT of $2^{\text {nd }}$ order with respect to the product defined above.
The Δ-GGJT of $2^{\text {nd }}$ order obtained in Theorem 2 is denoted by $(\mathfrak{F} \oplus \mathfrak{J})_{c}$. For $\varepsilon=+1$, if we define a linear mapping f of $W \otimes \mathfrak{F}$ into $(\Im \oplus \Im)_{+1}$ by $f\left(e_{1} \otimes x_{i}+e_{2} \otimes \bar{x}_{i}\right)=\binom{x_{i}}{\bar{x}_{i}}$ for all $i \in \Delta$, we have the following

Theorem 3. $W \otimes \mathscr{F}$ is isomorphic to $(\mathfrak{F} \oplus \mathfrak{J})_{+1}$ as Δ-GGJT of $2^{\text {nd }}$ order.

By direct calculations, we see that the product in the induced Δ-LGT $(\mathfrak{J} \oplus \mathfrak{S})_{*}^{*}$ is given as follows

$$
\begin{equation*}
\left[\binom{x_{i}}{\bar{x}_{i}}\binom{y_{j}}{\bar{y}_{j}}\binom{z_{k}}{\bar{z}_{k}}\right]=\binom{\alpha\left[x_{i} y_{j} z_{k}\right]+\beta\left[x_{i} \bar{y}_{j} \bar{z}_{k}\right]+\varepsilon \beta\left[\bar{x}_{i} y_{j} \bar{z}_{k}\right]+\beta\left[\bar{x}_{i} \bar{y}_{j} z_{k}\right]}{\alpha\left[x_{i} y_{j} \bar{z}_{k}\right]+\varepsilon \alpha\left[x_{i} \bar{y}_{j} z_{k}\right]+\alpha\left[\bar{x}_{i} y_{j} z_{k}\right]+\beta\left[\bar{x}_{i} \bar{y}_{j} \bar{z}_{k}\right]}, \tag{11}
\end{equation*}
$$

where $\left[x_{i} y_{j} z_{k}\right]$ is the product in \mathfrak{J}^{*}.
Remark 1. If we put $\varepsilon=-1$ in (10), $(\mathfrak{F} \oplus \Im)_{-1}$ is isomorphic to $J(\alpha, \beta, 0)$ in [1]. Hence Δ-LGA can be constructed by $\left(\Im \Im \Im_{\mathcal{S}}\right)_{-1}$ as in [1].

For an induced Δ-LGT \mathfrak{S}^{*}, we consider the vector space direct sum $\mathfrak{J}^{*} \oplus \mathfrak{S}^{*}$, which is spanned by $\left\{x_{i} \oplus \bar{x}_{i}: x_{i}, \bar{x}_{i} \in \mathfrak{J}_{i}^{*}, i \in \Delta\right\}$. Then, we denote an element $x_{i} \oplus \bar{x}_{i}$ in $\mathfrak{S}^{*} \oplus \mathfrak{S}^{*}$ by $\binom{x_{i}}{\bar{x}_{i}}$ and define a triple product $\mathfrak{J}^{*} \oplus \mathfrak{S}^{*}$ by

$$
\begin{equation*}
\left[\binom{x_{i}}{\bar{x}_{i}}\binom{y_{j}}{\bar{y}_{j}}\binom{z_{k}}{\bar{z}_{k}}\right]=\binom{\alpha\left[x_{i} y_{j} z_{k}\right]+\beta\left[x_{i} \bar{y}_{y} \bar{z}_{k}\right]+\beta\left[\bar{x}_{i} y_{j} \bar{z}_{k}\right]+\beta\left[\bar{x}_{i} \bar{y}_{j} z_{k}\right]}{\alpha\left[x_{i} y_{j} \bar{z}_{k}\right]+\alpha\left[x_{i} \bar{y}_{j} z_{k}\right]+\alpha\left[\bar{x}_{i} y_{j} z_{k}\right]+\beta\left[\bar{x}_{i} \bar{y}_{j} \bar{z}_{k}\right]} . \tag{12}
\end{equation*}
$$

Then, using the expression (11) we have
Theorem 4. $\mathfrak{S}^{*} \oplus \mathfrak{S}^{*}$ becomes a Δ-LGT and is isomorphic to $(\mathfrak{J} \oplus \Im)_{+1}^{*}$ as Δ-LGT.

Remark 2. If we put $\alpha=1$ and $\beta=0, \pm 1$ in the graded triple product (12), we get a graded generalization of the Lie triple product defined by Y. Taniguchi (cf. [9]).

References

[1] H. Asano and K. Yamaguti: A construction of Lie algebras by generalized Jordan triple systems of second order (graded case) (in preparation).
[2] I. Bars and M. Günaydin: Construction of Lie algebras and Lie superalgebras from ternary algebras. J. Math. Phys., 20, 1977-1993 (1979).
[3] V. G. Kac: Lie superalgebra. Advances in Math., 26, 8-26 (1977).
[4] -_: A sketch of Lie superalgebra theory. Comm. Math. Phys., 53, 31-64 (1977).
[5] Y. Kakiichi: Another construction of Lie algebras by generalized Jordan triple systems of second order. Proc. Japan Acad., 57A, 194-198 (1981).
[6] I. L. Kantor: Models of exceptional Lie algebras. Soviet Math. Dokl., 14, 254-258 (1973).
[7] O. Loos: Assoziative Tripelsysteme. Manuscripta Math., 7, 103-112 (1972).
[8] M. Scheunert: The theory of Lie superalgebras. Lect. Notes in Math., vol. 716, Springer (1979).
[9] Y. Taniguchi: On a kind of pairs of Lie triple systems. Math. Japon., 24, 605-608 (1980).
[10] H. Tilgner: A graded generalization of Lie triples. J. Algebra, 47, 190-196 (1977).
[11] K. Yamaguti: On generalizations of metasymplectic geometry. Notices Amer. Math. Soc., 26, no. 2, *764-A31 (1979).

