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Introduction. During the last few years the theory of graded
algebras and graded triples were developed both in mathematics and
physics. In our previous paper [5], from a two dimensional associative
triple system W and any generalized Jordan triple system of second
order we made a generalized Jordan triple system W(R) of second
order which induced the Lie triple system, and we had a Lie algebra
as a standard embedding of the Lie triple system. In this paper we
generalize the construction of Lie algebras in [5] to Z-or Z-graded
case. That is, from the same associative triple system W as in [5] and
any graded generalized Jordan triple of second order, we make a
graded generalized Jordan triple W(R) of second order which induces
the Lie-graded triple, and we have a Lie-graded algebra as a standard
embedding of the induced Lie-graded triple (Theorem 1).

1. Let 2 be Z or Z and let-- be a//-graded vector space.
Throughout the paper we assume that each vector subspace of
degree i is finite dimensional and x is an element in B. And we also
assume that the characteristic of the base field is different from 2 or
3. An endomorphism E of is called a graded endomorphism of
degree i if EBc+ for all ] e//and the vector space of such endo-
morphisms is denoted by End .

Let (R)-@e (R) be a A-graded vector space with graded bilinear
product [x, y] satisfying the following conditions:
( 1 ) [x, y] + (-- 1)[y, x] =0,
(2) (--1)[[x, y],z] +(--1)[[y,z],x] +(--1)[[z,x], y]=O,
then (R) is called a A-Lie-graded algebra (A-LGA) or a A-Lie superal-
gebra (cf. [3], [4], [8]).

2. A A-graded vector space =e with a graded trilinear
product {xyz} e // is called a A-graded triple (A-GT). An endo-
morphism D e End is called a graded derivation of degree i of if

D{xyzt} {Dxyz}+ (-- 1)’{xDyz}+ (-- 1)(j/ ){xyDz}.
Let Der be the vector space spanned by these graded derivations

of degree i and Der =eDer. For any two graded derivations
D e Der , D e Der their graded commutator [D, D] DD
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--(--1)DD is graded derivation of degree i+], Hence Der is a
zI-Lie-graded algebra ([10]).

Let %=e% be zI-GT with a product [xyz]= D(x, y)z satis-
fying the conditions"
( 3 ) [xyz]+ (- 1)t[yxz]
( 4 ) (-1)i[xyz]+(-1)[yzx]+(-1)[zxy]=O,
( 5 [D(x, y), D(u, v)]=D([xyu], v)+(--1)(+)D(u, [xyv]).

Then % is called a z-Lie-graded triple (z-LGT) which is a graded
generalization of Lie triple system ([10]). Any z-LGA becomes a
zI-LGT with respect to a triple product [xyz]=[[x, y], z]. For a
J-LGT %=@% the condition (5) shows that an endomorphism
D(x, y) is a graded derivation of degree i+] of which is called an
inner derivation. Let Inder % be a vector space spanned by inner
derivations of degree i in z-LGT %, then D(%, %)=@ Inder % be-
comes a J-Lie-graded subalgebra of Der %. This D(%, %) is called a
z-LGA of graded inner derivations in %. And the vector space direct
sum D(%, %)@ becomes a z-LGA relative to the following graded
product"

[Di+x, D+y] "--[D, D] +D(x, y)+Dy-(--1)Dx
for D e Inder %, D e Inder %, x e %, y e %. This z-LGA D(%, %)
@% is called the standard embedding zI-LGA of J-LGT % ([10]).

3. Let W be a two dimensional triple system with product {abc}
=l(a, b)c which has a basis [e, e} such that (eee}=ae, {eee}= {eee}

{e2elel}=e., {ele.e.}= {e2e,e2}= {e2e.e} e, (ee.e} fle, where , fle .
Then W is a commutative associative triple system (ATS) (cf. [7]) and
is also a Jordan triple system. In the ATS W, we have
( 6 l(a, b)l(c, d):l(c, d)l(a, b),
( 7 ) l(a, b)l(c, d): l(l(a, b)c, d)--l(c, l(b, a)d).

Let =e be a zI-GT with a product {xyz}. But {xyz}
L(x, y)z, and

K(x, y)z ( 1) {xzy} 1)(+)(yzx}.
Then we have
( 8 ) [L(x, y), L(u,

--L({xyu}, v)--(--1)(/)/iL(u, {yxvt}),
( 9 ) K(K(x, y)u, vt)

--K(x, y)L(u, v)+(-1)(/)(/)/tL(v, u)K(x, y).
Then, is called a zl-graded generalized Jordan triple of second order
(z-GGJT of 2 order) which is a graded generalization of a generalized
Jordan triple system of 2 order due to I. L. Kantor ([2], [6], [11]).

Using the identities (6) and (7), we have
Lemma 1. For the ATS W and any z/-GGJT --te of 2

order, define a graded trilinear product in W(R)=e(W(R)) by
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[a(R)xb(R)yc(R)z} "-- {abc}(R){xyz}
for a, b, c e W and x e , y e , z e . Then W@ becomes a
GGJT of 2 order.

It is known that a A-GGJT =e o 2" order with a product
{xyz} becomes a A-LGT relative to a new product ([1])
[xyz] {xyz} (- 1){yxz}+ (-- 1){xzy}-- (

We denote this -LGT by * and call an induced -LGT (from ).
For the -GGJT W@ of 2 order in Lemma 1, the -LGT product in
(W@)* is as follows" [a@xb@yc@z]={abc}@[xyz] or D(ax,
b@y)(c@z)=l(a, b)c@D(x, y)z, where a, b, c e W and x e , y e ,
.z e . Let be the -LGA of graded inr derivations D(a@x,
b@y) in the -LGT (W@)*. Then (W, )=(W@)* is the stand-
ard embedding -LGA of the -LGT (W@)*. By the property
the product ia (W@)* we hve

Inder (W@)* =l(W, W)@Inder *,
where l(W, W) is the vector space spanned by {l(a, b)" a, b e W}.
a0 or fl0 in W, then {ida, l(e, e)} is a basis o l(W, W), where id
is the identity endomorphism in W. Hence, we have

=id@D(,) l(e, e)@D(, ),
where D(, ) is a -LGA of graded inner derivations in *.

Then we obtain
Theorem 1. If aO or0 in the ATS W, then

(W, )=id@D(, ) l(e, e)@D(, ) (W@)*
is the standard embedding -LGA of the -LGT (W@)*, and

id@D(, ) l(e, e)@D(,
is a -Lie-graded subalgebra of (W, ) satisfying the following graded
commutator relations"

[,] , [,] , [,
where =id@D(, ), =l(e, e)@D(, ).

4. Let=et be a -GGJT of 2 order. Now we consider
the vector space direct sum=e(), which is spanned by
{x x, e , i e A}. Then we denote an elementx in by

(x, and define a triple product in by

where a, are the elements o2 the base field and e= 1. Then the
product defined above is a graded triple product in. By straight-

forward calculations, we have
Theorem 2. Let be a -GGJT of 2 order, then becomes
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a zI-GGJT of 2 order with respect to the product defined above.
The t-GGJT of 2" order obtained in Theorem 2 is denoted by

().. For = + 1, if we define a linear mapping f of W@ into

for all i e A, we have the following()+ by f(ex+e)
Theorem . W@ is isomorphic to ()+ as A-GGJT of 2"

order.
By direct calculations, we see that the product in the induced

A-LGT () is given as ollows

y ka[xy]+a[xyz]+a[yz]+fl[y]/’
where [xyz] is the product in *.

Remark 1. If we put =-1 in (10), ()_ is isomorphic to
J(a, fl, 0) in [1]. Hence A-LGA can be constructed by ()_ as in [1].

For an induced A-LGT *, we consider the vector space direct sum
3"*, which is spanned by{x x, e , i e A}. Then, we denote

(x) and define a triple product **an element xx in ** by x
by

a[xy]+a[xyz]+a[yz]+[y]/
Then, using the expression (11) we have
Theorem 4. ** becomes a A-LGT and is isomorphic to

()+ as A-LGT
Remark 2. If we put a=l and fl=0, 1 in the graded triple

product (12), we get a graded generalization of the Lie triple product
defined by Y. Taniguchi (cf. [9]).
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