87. Modular Forms of Degree n and Representation by Quadratic Forms. III

Kloosterman's Method

By Yoshiyuki KITAOKA Department of Mathematics, Nagoya University (Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

Kloosterman improved a result of Hecke about estimates of Fourier coefficients of cusp forms by using so-called Kloosterman sums. Our aim is to generalize his method to Siegel modular forms of degree 2 with two assumptions on exponential sums and to apply it to representations by quadratic forms.

Terminology and notations. Let H be the space of 2×2 complex symmetric matrices Z whose imaginary part is positive definite, and $\Gamma = Sp_{2}(Z)$ which acts on H discontinuously. Denote by \mathfrak{F} the fundamental domain $\Gamma \setminus H$ by Siegel (p. 169 in [5]). By $\Gamma(\infty)$ we denote the subgroup $\left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \in \Gamma \right\}$ of Γ where 0 is the 2×2 zero matrix and Sstands for $\bigcup_{M \in \Gamma(\infty)} M\langle \mathfrak{F} \rangle$. By $\Lambda, Q\Lambda$ and $R\Lambda$ we denote the set of integral, rational and real symmetric 2×2 matrices respectively, and Λ^* stands for $\{(s_{ij}) \in Q\Lambda | s_{11}, s_{22} \in Z, 2s_{12} \in Z\}$. For $C, D \in M_2(Z)$, (C, D)=1 means that there exist matrices $A, B \in M_2(Z)$ such that $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ $\in \Gamma$. σ stands for the trace of square matrices and e(z) means $\exp(2\pi i z)$ for a complex number z.

We gather two assumptions and some lemmas.

Assumption 1. Let c_1, c_2 be natural numbers with $c_1 | c_2$ and $Y \in \mathbf{R}\Lambda$ positive definite. Then we assume

 $\sum_{g_4} \sum_{s_4} e(s_1g_1/c_1 + s_2g_2/c_1 + s_4g_4/c_2) = O(c_1^2c_2^{1+\epsilon}) \quad for \ any \ \epsilon > 0,$ where g_1, g_2, s_1, s_2 run over Z/c_1Z and g_4, s_4 run over Z/c_2Z and moreover

 $\{s_i\}$ satisfies

$$inom{s_1/c_1 & s_2/c_1}{s_2/c_1 & s_4/c_2} + \sqrt{-1}Y \in {\mathbb G}.$$

Here O is independent of Y.

Assumption 2. Let $C \in M_2(Z)$, $|C| \neq 0$. For $G_1, G_2 \in A^*$ we put $K(G_1, G_2; C) = \sum_{D} e(\sigma(AC^{-1}G_1 + C^{-1}DG_2))$

where D runs over $\{D \in M_2(Z) \mod CA | (C, D) = 1\}$ and A is a matrix such that $\begin{pmatrix} A & * \\ C & D \end{pmatrix} \in \Gamma$. For these generalized Kloosterman sums we assume for $0 < \kappa \le 1/2$:

for natural numbers $c_1 | c_2$ and for $G_1, G_2 \in \Lambda^*$,

$$K\left(G_1,G_2;\begin{pmatrix}c_1&0\\0&c_2\end{pmatrix}
ight)=O(c_1^2c_2^{1-\kappa+\epsilon}(c_2,g)^{\kappa}) \quad for \ any \ \varepsilon>0,$$

where g is the (2, 2)-entry of G_2 . ($\kappa = 1/2$ is plausible.)

Let $C \in M_2(Z)$ with $|C| \neq 0$, and $\tau \in H$. For $S \in QA$ with $SC \in M_2(Z)$ we put

$$g(S; C, \tau) = \begin{cases} 1 & \text{if } S + \tau \in \mathfrak{G}, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have $g(S; C, \tau) = \sum_{G} b(G; C, \tau) e(\sigma(SG))$ for some $b(G; C, \tau) \in C$ where G runs over the representatives of $\Lambda^* / \mathfrak{S}(C), \mathfrak{S}(C) = \{G \in \Lambda^* | \sigma(SG) \in \mathbb{Z} \text{ for } S \in \mathbb{Q}\Lambda \text{ which satisfies } SC \in M_2(\mathbb{Z})\}.$

Lemma 1. If Assumption 1 is true, then for the above C and τ we have

$$\sum_{G} |b(G; C, \tau)| = O(c_2^{\epsilon}) \quad for \ any \ \epsilon > 0,$$

where G runs over $\Lambda^*/\mathfrak{S}(C)$ and the elementary divisors of C are $c_1, c_2 > 0$, $c_1 | c_2$, and O is independent of τ .

For
$$G = (g_{ij}) \in A^*$$
 we put $e(G) = (g_{11}, g_{22}, 2g_{12})$. Put $S = \left\{ \begin{pmatrix} b \\ d \end{pmatrix} \middle| b, d \in Z, (b, d) = 1 \right\}.$

For a fixed natural number n we define an equivalence relation \sim in S by the following:

 $\binom{b}{d} \sim \binom{b'}{d'}$ iff $\binom{b}{d} \equiv w \binom{b'}{d'} \mod n$ for an integer w prime to n.

Put $S(n) = S/\sim$; then we have

Lemma 2. Let $0 < \kappa \le 1/2$. For $G \in \Lambda^*$ we have

$$\sum_{x \in S(n)} (G[x], n)^{\epsilon} = O(n^{1+\epsilon}(e(G), n)^{\epsilon}) \quad for \ any \ \epsilon > 0.$$

Let $T = \begin{pmatrix} t_1 & t_2 \\ t_2 & t_4 \end{pmatrix} \in A^*$ such that $0 < t_1$, $2 |t_2| \le t_1$, $t_4 \ge t_1$, and assume that t_1 is sufficiently large. We shall fix such a T once and for all in the following.

Lemma 3. Let

$$M = egin{pmatrix} st & st & st \ c & 0 \ 0 & 0 \end{pmatrix}^t U \quad egin{pmatrix} d & 0 \ 0 & 1 \end{pmatrix} U^{-1} \end{pmatrix} \in arGamma$$

with $c \neq 0$, $U \in GL(2, \mathbb{Z})$. If $M \langle X + iT^{-1} \rangle \in \mathfrak{G}$ for some $X \in \mathbb{R}\Lambda$, then the first column of U is equal to $\pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ or $\pm \begin{pmatrix} 1 \\ n \end{pmatrix}$, $n \in \mathbb{Z}$.

Now let q, k be natural numbers ($k \ge 3$), and

$$f(Z) = \sum_{0 \le P \in A^*} a(P) e(\sigma(PZ))$$

be a modular form of degree 2, level q and weight k whose constant term vanishes at every cusp, that is,

(i) f(Z) is holomorphic on H,

(ii) putting
$$(f|M)(Z) = |CZ+D|^{-k} f(M\langle Z \rangle)$$
 for
 $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma$, $(f|M)(Z) = \sum_{0 \le P \in A^*} a_M(P) e(\sigma(PZ)/q)$

with $a_M(0) = 0$ for $M \in \Gamma$,

(iii) if $M \in \Gamma$ satisfies $M \equiv 1_2 \mod q$, then $f \mid M = f$ follows.

Put $E = \{(x_{ij}) \in \mathbb{R}A \mid 0 \le x_{ij} < q\}$ and $E(M) = \{X \in E \mid M \langle X + iT^{-1} \rangle \in \mathfrak{G}\}$ for $M \in \Gamma(\infty) \setminus \Gamma$; then the measure of $E(M) \cap E(N)$ becomes 0 if $\Gamma(\infty)M \neq \Gamma(\infty)N$. Hence we have

$$a(T) = q^{-3} \exp \left(4\pi\right) \sum_{\substack{M \in \Gamma(\infty) \setminus \Gamma \\ M \in \Gamma(\infty)}} \alpha(M),$$

where

$$\alpha(M) = \alpha(C, D) = \int_{x \in E(M)} f(X + iT^{-1})e(-\sigma(TX))dX, \qquad M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

Proposition 1. Let $C, \tilde{D} \in M_2(Z)$ and assume that $|C| \neq 0$ and there is an element $\begin{pmatrix} \alpha & \beta \\ C & \delta \end{pmatrix} \in \Gamma$ such that $\delta \equiv \tilde{D} \mod q$. We put $\tau = \tau(\theta)$ $= -{}^t C^{-1}(\theta + iT^{-1})^{-1}C^{-1}$ for $\theta \in \mathbb{R}\Lambda$ and $\left(f \middle| \begin{pmatrix} \alpha & \beta \\ - & - \end{pmatrix}^{-1} \right) (Z) = \sum_{i=1}^{n} a'(P)e(\sigma(PZ)/q).$

$$\left(f \left| \begin{pmatrix} \alpha & \beta \\ C & \delta \end{pmatrix}^{-1} \right) (Z) = \sum_{0 \le P \in A^*} a'(P) e(\sigma(PZ)/e) \right|$$

Then we have

$$\begin{split} \sum_{\substack{D \equiv D \mod q \\ (C,D)=1}} & \alpha(C,D) \\ &= \sum_{D_i} \left[\Lambda \cap q C^{-1} M_2(Z) : q \Lambda \right] |C|^{-k} \int_{A_i C^{-1} + \tau \in \mathfrak{G}} |\theta + iT^{-1}|^{-k} \sum_{\substack{P \\ (\mathfrak{K})}} a'(P) \\ & \times e(\sigma(P\tau)/q) e(-\sigma(T\theta)) e(\sigma(PA_i C^{-1}q^{-1} + TC^{-1}D_i)) d\theta \\ &= \left[\Lambda \cap q C^{-1} M_2(Z) : q \Lambda \right] |C|^{-k} \int_{\theta} |\theta + iT^{-1}|^{-k} \sum_{\substack{P \\ (\mathfrak{K})}} a'(P) e(\sigma(P\tau)/q) \\ & \times e(-\sigma(T\theta)) \sum_{\mathcal{G}} b(G\,;C,\tau) S\left(G,P,T\,;C,\begin{pmatrix} \alpha & \beta \\ C & \delta \end{pmatrix}\right) d\theta, \end{split}$$

where

$$S\left(G, P, T; C, \begin{pmatrix} \alpha & \beta \\ C & \delta \end{pmatrix}\right) = \sum_{D_i} e(\sigma(A_i C^{-1} G + P A_i C^{-1} q^{-1} + T C^{-1} D_i)).$$

Here D_i runs over the set $\{D \in M_2(\mathbb{Z}) \mod \{CS \mid S \in A, CS \equiv 0 \mod q\} \mid (C, D) = 1, D \equiv \tilde{D} \mod q\}$ and A_i is a matrix which satisfies

$$M = \begin{pmatrix} A_i & * \ C & D_i \end{pmatrix} \equiv \begin{pmatrix} lpha & eta \ C & \delta \end{pmatrix} \mod q, \ M \in arGamma.$$

G runs over $\Lambda^*/\mathfrak{S}(C)$ as in Lemma 1. $P \in \Lambda^*$ satisfies the condition (*):

(*) $\sigma(PS)\equiv 0 \mod q \text{ for } S \in \Lambda \text{ such that } CS\equiv 0 \mod q.$

The above $S(G, P, T; C, \begin{pmatrix} \alpha & \beta \\ C & \delta \end{pmatrix})$ can be represented by the above generalized Kloosterman sums.

No. 7]

Proposition 2. Let

$$C = U \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} V, c_1 | c_2, U, V \in GL(2, Z)$$

for natural numbers c_1, c_2 , and $\tilde{D} \in M_2(Z)$. Under Assumptions 1, 2 we have

$$igg| \sum_{D \equiv D \mod q \atop \{(C,D) = 1 \ lpha \} = 0} lpha(C,D) igg| \ \ll |C|^{-k} c_1^2 c_2^{1-\kappa+\epsilon}(c_2, T[V^{-1}]_4)^{\epsilon} \int_{ heta} \| heta + iT^{-1}\|^{-\kappa} \exp{(-\kappa_1 m(Im au))} d heta \ \ll |T|^{k-3/2} c_1^{2-\kappa} c_2^{1-\kappa-k+\epsilon}(c_2, T[V^{-1}]_4)^{\epsilon} \ imes \{ c_2^{k-2} t_1^{1-k/2} \quad if \ c_2 \leq \sqrt{t_1}, \ 1 \quad if \ c_2 > \sqrt{t_1}, \}$$

where ε is any positive number, $T[V^{-1}]_4$ stands for the (2, 2)-entry of $T[V^{-1}]$, κ_1 is a positive constant and $\tau = -{}^tC^{-1}(\theta + iT^{-1})^{-1}C^{-1}$ and

$$m(Y) = \min_{\substack{x \in \mathbb{Z}^2 \\ x \neq 0}} Y[x]$$
 for positive $Y \in \mathbf{R}\Lambda$.

By using Lemma 2, we have

Proposition 3. Let $\tilde{D} \in M_2(Z)$. Under Assumptions 1, 2 we have $\sum_{\substack{M = \binom{AB}{CD} \in \Gamma(\infty) \setminus \Gamma \\ |C| \neq 0, D \equiv D \mod q}} \alpha(C, D) = O(t_1^{(3-k)/2-s/2+\epsilon} |T|^{k-3/2}).$

By using Lemma 3 and a method in [3] we have

Proposition 4. Let $\tilde{d} \in \mathbb{Z}$. Then we have $\sum \alpha \left(\begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix}^t U, \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix} U^{-1} \right) = O\left(t_1^{2^{-k+\epsilon}} |T|^{k-3/2} \left(\sum_{r \mid t_4} r^{2-k} d(r) \log r \right) \right),$

where c, d run over Z so that (c, d)=1, $d\equiv \tilde{d} \mod q$ and $c\neq 0$, and

$$U \in GL(2, \mathbb{Z}) / \left\{ \pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \middle| n \in \mathbb{Z} \right\}, \quad and \quad d(r) = \sum_{n \mid r} 1$$

Summing up, we have

Theorem. Let $f(Z) = \sum_{0 \le P \in A^*} a(P)e(\sigma(PZ))$ be a modular form of degree 2, level q and weight $k \ge 3$ whose constant term vanishes at each cusp. Under Assumptions 1, 2 we have

$$a(T) = O(t_1^{(3-k)/2-\kappa/2+\epsilon} |T|^{k-3/2}) \\ \times \{ \begin{array}{cc} 1 & k \ge 4 \\ \sum_{r \mid t_4} r^{-1} d(r) \log r & k = 3 \end{array} \}, \quad if \ t_1 \gg 0,$$

where $T = \begin{pmatrix} t_1 & t_2 \\ t_2 & t_4 \end{pmatrix} \in \Lambda^*$ with $0 < t_1, \ 2 |t_2| \le t_1, \ t_1 \le t_4.$

Corollary. Let A, B be integral symmetric positive definite matrices of degree 6, 2 respectively. Suppose that Assumptions 1, 2 are true and that A[X]=B is soluble in $M_{6,2}(Z_p)$ for every prime p, and that for any fixed number $t, p^t ||B|$ if a prime p divides 2|A|. Then A[X]=B is soluble in $M_{6,2}(Z)$ if b_1 is sufficiently large and either |B| $< \exp(b_1^{*/5}) \text{ or } \sum_{r \mid b_4} r^{-1} d(r) \log r < t \text{ where } B = \begin{pmatrix} b_1 & b_2 \\ b_2 & b_4 \end{pmatrix} \text{ and } 0 < b_1, 2 |b_2| \le b_1, b_1 \le b_4.$

Remark. $\sum_{r|b} r^{-1}d(r) \log r \ll \min(d(b), (\log b)^2)$. If degree of $A \ge 7$, then it is known that the local solubility of A[X] = B yields the global solubility if $m(B) \gg 0$.

Detailed proofs will appear elsewhere.

References

- T. Estermann: Vereinfacher Beweis eines Satzes von Kloosterman. Hamb. Abh., 7, 82–98 (1930).
- [2] J. S. Hsia, Y. Kitaoka, and M. Kneser: Representations of positive definite quadratic forms. J. reine angew. Math., 301, 132-141 (1978).
- [3] Y. Kitaoka: Modular forms of degree n and representation by quadratic forms. II (to appear in Nagoya Math. J.).
- [4] H. D. Kloosterman: Asymptotische Formeln für die Fourierkoeffizienten ganzer Modulformen. Hamb. Abh., 5, 337–352 (1927).
- [5] H. Maaß: Siegel's modular forms and Dirichlet series. Lect. Notes in Math., vol. 216, Springer-Verlag (1971).
- [6] S. Raghavan: Modular forms of degree n and representation by quadratic forms. Ann. of Math., 70, 446-477 (1959).
- [7] H. Salié: Zur Abschätzung der Fourierkoeffizienten ganzen Modulformen. Math. Z., 36, 263-278 (1931).
- [8] C. L. Siegel: On the theory of indefinite quadratic forms. Ann. of Math., 45, 577-622 (1944).