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87. Modular Forms of Degree n and Representation
by Quadratic Forms. III

Kloosterman’s Method

By Yoshiyuki KITAOKA
Department of Mathematics, Nagoya University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1981)

Kloosterman improved a result of Hecke about estimates of
Fourier coefficients of cusp forms by using so-called Kloosterman sums.
Our aim is to generalize his method to Siegel modular forms of degree
2 with two assumptions on exponential sums and to apply it to repre-
sentations by quadratic forms.

Terminology and notations. Let H be the space of 2X 2 complex
symmetric matrices Z whose imaginary part is positive definite, and
I'=8Sp,(Z) which acts on H discontinuously. Denote by ¥ the funda-
mental domain I"\H by Siegel (p. 169 in [5]). By I'(c0) we denote the

subgroup {(3 :) e I’} of I where 0 is the 2X2 zero matrix and ®

stands for Uyere) M(E>. By 4,Q4 and RA we denote the set of
integral, rational and real symmetric 2 X2 matrices respectively, and
A* stands for {(s,;) € Q4|8y,8»€ Z, 28,,€ Z}. For C, De M(Z), (C, D)
=1 means that there exist matrices A4, B ¢ M,(Z) such that (é IB;)
el'. o stands for the trace of square matrices and e(z) means
exp (2riz) for a complex number z.

We gather two assumptions and some lemmas.

Assumption 1. Let ¢,, ¢, be natural numbers with c,|c,and Y € RA
positive definite. Then we assume

;'Z o(8,9:/¢,+8:9:/¢,+8,9,/¢)=0(cle;*)  for any >0,

where g,, 9, 8., S; Tun over Z/¢e,.Z and g,, 8, run over Z/c,Z and moreover
{s.} satisfies
(31/01 82/01)+ mY e G.
S;/C  8./¢
Here O is independent of Y.
Assumption 2. Let Ce M\(Z), |C|#0. For G, G, A* we put
K(G,, Gy C)=§ e(e(AC'G,+C'DGy)

where D runs over {D e M,(Z)mod CA|(C,D)=1} and A is a matriz

such that (‘é 1*)) el’. For these generalized Kloosterman sums we
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assume for 0<x<<1/2:
for natural numbers c,|c, and for G,, G, € A*,
K <G1, G.; (8‘ 0>>=0(6%0%“”(cz, 9  for any >0,
Cy
where g is the (2, 2)-entry of G,. (k=1/2 is plausible.)
Let C e M,(Z) with |C|#0,and € H. For Se QA with SC e M,(Z)
we put
1 ifS4+7e®
S;C, ———{ ’
9 2 0 otherwise.
Then we have g(S; C,7)=>, b(G; C, t)e(c(SG)) for some b(G; C,7) e C
where G runs over the representatives of 4*/&(C), S(C)={G € 4* |a(SG)
e Z for S € Q4 which satisfies SC € M(Z)}.
Lemma 1. If Assumption 1 is true, then for the above C and z
we have

>110(G; C, ) |=0(c) for any >0,
G

where G runs over A* /S(C) and the elementary divisors of C are c,, ¢,
>0, ¢, |c, and O is independent of <.
For G=(g,,) € 4* we put e(G)=(9y1 9, 29,)). Put

S— {(3>|b,de Z, (b, d):l}.

For a fixed natural number » we define an equivalence relation ~ in
S by the following :
b '\ . (D\N_ (b . .
(d) ~ ( d’> iff (d)_w<d/) mod n for an integer w prime to n.
Put S(n)=S8/~ ; then we have
Lemma 2. Let 0<x<1/2. For Ge A* we have
> (Glzl, n) =0 (e(G), 1)) for any ¢>0.

zeS(n)

Let T=(§1 §2> e A* such that 0<{¢,, 2|,|<t,, t,>1,, and assume

2 4
that t, is sufficiently large. We shall fix such a T once and for all in
the following.
Lemma 3. Let

* *
M=((c O>‘U <d 0) U"‘) el’
00 01
with ¢#0, Ue GL(2, Z). If M{(X+iT*>e® for some X € RA, then

the first column of U is equal to i(?) or i(ql@), neZ.

Now let q, k& be natural numbers (k>3), and
J(Z) =OSPZ€A* a(P)e(o(PZ))

be a modular form of degree 2, level q and weight ¥ whose constant
term vanishes at every cusp, that is,
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(i) f(Z)is holomorphic on H,
(ii) putting (/| M)(Z)=|CZ+D|"*/(M(ZY) for
M=(4 BYel,  GID@D= 3 auPePD)/0)
C D 0<Fe s

with a,(0)=0 for M eI,

(iii) if M eI satisfies M=1, mod ¢, then f|M=f follows.

Put E={(z,) e RA|0<2,;<q} and E(M)={X e E|M{(X+iT"") ¢ ©}
for M e I'(c0)\I'; then the measure of E(M)NE(N) becomes 0 if
I'(0)M+I'(0)N. Hence we have

a(T)=q " exp@r) 2. oaM),

MeT ()\
ME ()

where
“D)=aC, D)= AT Ve—oTxNaX,  M=(4 E).
XEE(M) C D
Proposition 1. Let C,DeM(Z) and assume that |C|#0 and

there is an element (aC‘, g) e I" such that =D mod q. We put t=1(0)

= —tCY(@+iT-)'C-* for 6 € RA and
a B -1 _ ,
(f ‘(C 5) >(Z)—OQZGZA*a(P)e(a(PZ)/q),
Then we have

2. «C,D)

D
{DED mod ¢
(¢,D)=1

=31 14N qC M(2): ¢4] |C|-kj 6+IT X @/(P)

(k)
X e(a(Pz)/q)e(—o(TO))e(a(PA,C g +TC-DY)do
=[4ANqCM(Z): qA1|C|** j 0+ T ¢/(Plelo(Po)/q)

k)

X e(—o(T0) 3 b(G; C, f)S(G, P,T;C, ("C‘, g))de,

AiC—14z€

where

S(G, P,T;C, ("é ﬁ)) — 3 elo(A,C7G+PACT "+ TCD)).

HereD, TUNS OVer the set {D e M(Z) mod{CS|S € 4,CS=0modq}|(C, D)
=1, D=D mod q} and A, is a matrix which satisfies

M=<gi 5)5(05 ﬁ)modq,MeF.

G runs over A*/S(C) as in Lemma 1. P e A* satisfies the condition (x):
(x) o(PS)=0mod q for S e A such that ‘CS=0mod q.

The above S(G, P, T;C, (Cé g)) can be represented by the above

generalized Kloosterman sums.
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Proposition 2. Let
C— U(gl 0>V, el ey U, Ve GLE, Z)
¢

for natural numbers c,,c,, and ﬁeMZ(Z). Under Assumptions 1, 2
we have

| = «cD)

D
{Dsﬁ mod ¢
(C,D)=1

L|C Feiey (e TIV 1" L |6 43T ~* exp (—k,m(Imz))do
K| T =t e (e, TIV 1"
o a<vh,
1 if &>ty
where ¢ is any positive number, TV '], stands for the (2, 2)-entry of
TIV 1], &, 18 & positive constant and r= —‘C (G-+iT-)'C~* and
m(Y)=min Y[x] for positive Y € RA.

zEZ2
x#0

By using Lemma 2, we have
Proposition 3. Let DeM/(Z). Under Assumptions 1,2 we have
Z C((C, D)=0(t£3—k)/2~5/2+s lle—3/2).

w-(4Derenr
|C1#0,D =D mod ¢

By using Lemma 3 and a method in [3] we have
Proposition 4. Let de Z. Then we have

e 0o (¢ 00 )-ofs - mt (5 aoee)

where ¢, d run over Z so that (¢, d)=1, d=d mod q and ¢+0, and
UeGLE, Z)/{i((l) ’;) ’n e z}, and  d(H)=31.
nir

Summing up, we have ,

Theorem. Let f(Z)=> cpcn &(P)e(a(PZ)) be a modular form of
degree 2, level q and weight k>3 whose constant term vanishes at
each cusp. Under Assumptions 1, 2 we have

. a’(T)ZO(tiz_k)/z—x/zﬂ lle—a/Z)

1 k>4} .
- ? tl 0’
X{Zﬂuﬁr“d(r)logr b3 if 6>

where T:(Z 2) € A with 0<t,, 2|t|<ti, t,<t.

Corollary. Let A,B be integral symmetric positive definite
matrices of degree 6, 2 respectively. Suppose that Assumptions 1, 2
are true and that A[X]1=B is soluble in M, (Z,) for every prime p, and
that for any fixed number t, p'4|B| if a prime p divides 2|A|. Then
A[X]1=B is soluble in M, (Z) if b, is sufficiently large and either |B|
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<exp (b5°) or >3, r7'd(r) log r<t where B=<2: 2
<b,, b,<0..

Remark. 2,7 'd(r)log r<min (d(b), (log b)*). If degree of A
>7, then it is known that the local solubility of A[X]=B yields the
global solubility if m(B)> 0.

Detailed proofs will appear elsewhere.

2) and 0<D,, 2|b,|
4,
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