87. Modular Forms of Degree n and Representation by Quadratic Forms. III

Kloosterman's Method

By Yoshiyuki Kitaoka
Department of Mathematics, Nagoya University
(Communicated by Shokichi Ifanaga, m. J. A., Sept. 12, 1981)

Kloosterman improved a result of Hecke about estimates of Fourier coefficients of cusp forms by using so-called Kloosterman sums. Our aim is to generalize his method to Siegel modular forms of degree 2 with two assumptions on exponential sums and to apply it to representations by quadratic forms.

Terminology and notations. Let H be the space of 2×2 complex symmetric matrices Z whose imaginary part is positive definite, and $\Gamma=S p_{2}(Z)$ which acts on H discontinuously. Denote by \mathscr{F} the fundamental domain $\Gamma \backslash H$ by Siegel (p. 169 in [5]). By $\Gamma(\infty)$ we denote the subgroup $\left\{\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right) \in \Gamma\right\}$ of Γ where 0 is the 2×2 zero matrix and (G) stands for $\cup_{M \in \Gamma(\infty)} M\langle\mathscr{F}\rangle$. By $\Lambda, \boldsymbol{Q} \Lambda$ and $\boldsymbol{R} \Lambda$ we denote the set of integral, rational and real symmetric 2×2 matrices respectively, and Λ^{*} stands for $\left\{\left(s_{i j}\right) \in \boldsymbol{Q} \Lambda \mid s_{11}, s_{22} \in \boldsymbol{Z}, 2 s_{12} \in \boldsymbol{Z}\right\}$. For $C, D \in M_{2}(\boldsymbol{Z}),(C, D)$ $=1$ means that there exist matrices $A, B \in M_{2}(Z)$ such that $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ $\in \Gamma . \quad \sigma$ stands for the trace of square matrices and $e(z)$ means $\exp (2 \pi i z)$ for a complex number z.

We gather two assumptions and some lemmas.
Assumption 1. Let c_{1}, c_{2} be natural numbers with $c_{1} \mid c_{2}$ and $Y \in \boldsymbol{R} \Lambda$ positive definite. Then we assume

$$
\sum_{g_{i}} \mid \sum_{s_{i}} e\left(s_{1} g_{1} / c_{1}+s_{2} g_{2} / c_{1}+s_{4} g_{4} / c_{2}\right)=O\left(c_{1}^{2} c_{2}^{1+\varepsilon}\right) \quad \text { for any } \varepsilon>0
$$

where $g_{1}, g_{2}, s_{1}, s_{2}$ run over $Z / c_{1} Z$ and g_{4}, s_{4} run over $Z / c_{2} Z$ and moreover $\left\{s_{i}\right\}$ satisfies

$$
\left(\begin{array}{ll}
s_{1} / c_{1} & s_{2} / c_{1} \\
s_{2} / c_{1} & s_{4} / c_{2}
\end{array}\right)+\sqrt{-1} Y \in \mathbb{S} .
$$

Here O is independent of Y.
Assumption 2. Let $C \in M_{2}(Z),|C| \neq 0$. For $G_{1}, G_{2} \in \Lambda^{*}$ we put

$$
K\left(G_{1}, G_{2} ; C\right)=\sum_{D} e\left(\sigma\left(A C^{-1} G_{1}+C^{-1} D G_{2}\right)\right)
$$

where D runs over $\left\{D \in M_{2}(Z) \bmod C \Lambda \mid(C, D)=1\right\}$ and A is a matrix such that $\left(\begin{array}{ll}A & * \\ C & D\end{array}\right) \in \Gamma$. For these generalized Kloosterman sums we
assume for $0<\kappa \leq 1 / 2$:
for natural numbers $c_{1} \mid c_{2}$ and for $G_{1}, G_{2} \in \Lambda^{*}$,
$K\left(G_{1}, G_{2} ;\left(\begin{array}{cc}c_{1} & 0 \\ 0 & c_{2}\end{array}\right)\right)=O\left(c_{1}^{2} c_{2}^{1-\kappa+\epsilon}\left(c_{2}, g\right)^{\varepsilon}\right) \quad$ for any $\varepsilon>0$,
where g is the (2,2)-entry of $G_{2} . \quad(\kappa=1 / 2$ is plausible.)
Let $C \in M_{2}(\boldsymbol{Z})$ with $|C| \neq 0$, and $\tau \in H . \quad$ For $S \in \boldsymbol{Q} \Lambda$ with $S C \in M_{2}(Z)$ we put

$$
g(S ; C, \tau)= \begin{cases}1 & \text { if } S+\tau \in \mathbb{G} \\ 0 & \text { otherwise }\end{cases}
$$

Then we have $g(S ; C, \tau)=\sum_{a} b(G ; C, \tau) e(\sigma(S G))$ for some $b(G ; C, \tau) \in \boldsymbol{C}$ where G runs over the representatives of $\Lambda^{*} / \subseteq(C), ~ \subseteq(C)=\left\{G \in \Lambda^{*} \mid \sigma(S G)\right.$ $\in \boldsymbol{Z}$ for $S \in \boldsymbol{Q} \Lambda$ which satisfies $\left.S C \in M_{2}(Z)\right\}$.

Lemma 1. If Assumption 1 is true, then for the above C and τ we have

$$
\sum_{G}|b(G ; C, \tau)|=O\left(c_{2}^{\varepsilon}\right) \quad \text { for any } \varepsilon>0
$$

where G runs over $\Lambda^{*} / \subseteq(C)$ and the elementary divisors of C are c_{1}, c_{2} $>0, c_{1} \mid c_{2}$, and O is independent of τ.

For $G=\left(g_{i j}\right) \in \Lambda^{*}$ we put $e(G)=\left(g_{11}, g_{22}, 2 g_{12}\right)$. Put

$$
S=\left\{\left.\binom{b}{d} \right\rvert\, b, d \in Z,(b, d)=1\right\} .
$$

For a fixed natural number n we define an equivalence relation \sim in S by the following :

$$
\binom{b}{d} \sim\binom{b^{\prime}}{d^{\prime}} \text { iff }\binom{b}{d} \equiv w\binom{b^{\prime}}{d^{\prime}} \bmod n \quad \text { for an integer } w \text { prime to } n
$$

Put $S(n)=S / \sim$; then we have
Lemma 2. Let $0<\kappa \leq 1 / 2$. For $G \in \Lambda^{*}$ we have

$$
\sum_{x \in S(n)}(G[x], n)^{x}=O\left(n^{1+\varepsilon}(e(G), n)^{x}\right) \quad \text { for any } \varepsilon>0
$$

Let $T=\left(\begin{array}{ll}t_{1} & t_{2} \\ t_{2} & t_{4}\end{array}\right) \in \Lambda^{*}$ such that $0<t_{1}, 2\left|t_{2}\right| \leq t_{1}, t_{4} \geq t_{1}$, and assume that t_{1} is sufficiently large. We shall fix such a T once and for all in the following.

Lemma 3. Let

$$
M=\left(\begin{array}{cc}
& * \\
\left(\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right)^{t} U & * \\
\left(\begin{array}{ll}
d & 0 \\
0 & 1
\end{array}\right) U^{-1}
\end{array}\right) \in \Gamma
$$

with $c \neq 0, U \in G L(2, Z)$. If $M\left\langle X+i T^{-1}\right\rangle \in \mathbb{S}$ for some $X \in \boldsymbol{R} \Lambda$, then the first column of U is equal to $\pm\binom{ 0}{1}$ or $\pm\binom{ 1}{n}, n \in \boldsymbol{Z}$.

Now let q, k be natural numbers ($k \geq 3$), and

$$
f(Z)=\sum_{0 \leq P \in \Lambda^{*}} a(P) e(\sigma(P Z))
$$

be a modular form of degree 2 , level q and weight k whose constant term vanishes at every cusp, that is,
(i) $f(Z)$ is holomorphic on H,
(ii) putting $(f \mid M)(Z)=|C Z+D|^{-k} f(M\langle Z\rangle)$ for

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma, \quad(f \mid M)(Z)=\sum_{0 \leq P \in \Lambda^{*}} a_{M}(P) e(\sigma(P Z) / q)
$$

with $a_{M}(0)=0$ for $M \in \Gamma$,
(iii) if $M \in \Gamma$ satisfies $M \equiv 1_{2} \bmod q$, then $f \mid M=f$ follows.

Put $E=\left\{\left(x_{i j}\right) \in \boldsymbol{R} \Lambda \mid 0 \leq x_{i j}<q\right\}$ and $E(M)=\left\{X \in E \mid M\left\langle X+i T^{-1}\right\rangle \in \mathscr{E}\right\}$ for $M \in \Gamma(\infty) \backslash \Gamma$; then the measure of $E(M) \cap E(N)$ becomes 0 if $\Gamma(\infty) M \neq \Gamma(\infty) N$. Hence we have

$$
a(T)=q^{-3} \exp (4 \pi) \sum_{\substack{\left.M \in \Gamma^{(\infty}\right) \backslash \Gamma \\ M \oplus(\infty)}} \alpha(M),
$$

where

$$
\alpha(M)=\alpha(C, D)=\int_{x \in E(M)} f\left(X+i T^{-1}\right) e(-\sigma(T X)) d X, \quad M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

Proposition 1. Let $C, \tilde{D} \in M_{2}(Z)$ and assume that $|C| \neq 0$ and there is an element $\left(\begin{array}{ll}\alpha & \beta \\ C & \delta \\ \delta\end{array}\right) \in \Gamma$ such that $\delta \equiv \tilde{D} \bmod q$. We put $\tau=\tau(\theta)$ $=-{ }^{t} C^{-1}\left(\theta+i T^{-1}\right)^{-1} C^{-1}$ for $\theta \in \boldsymbol{R} \Lambda$ and

$$
\left(f \left\lvert\,\left(\begin{array}{ll}
\alpha & \beta \\
C & \delta
\end{array}\right)^{-1}\right.\right)(Z)=\sum_{0 \leq P \in \Lambda^{*}} a^{\prime}(P) e(\sigma(P Z) / q)
$$

Then we have

$$
\begin{aligned}
& \sum_{\substack{D \\
\left\{\begin{array}{l}
D \\
(C, D)=1 \\
\text { mod } q
\end{array}\right.}} \alpha(C, D) \\
& =\sum_{D_{i}}\left[\Lambda \cap q C^{-1} M_{2}(Z): q \Lambda\right]|C|^{-k} \int_{A_{i} C-1+\tau \in \Theta}\left|\theta+i T^{-1}\right|^{-k} \sum_{\substack{P \\
(*)}} a^{\prime}(P) \\
& \times e(\sigma(P \tau) / q) e(-\sigma(T \theta)) e\left(\sigma\left(P A_{i} C^{-1} q^{-1}+T C^{-1} D_{i}\right)\right) d \theta \\
& =\left[\Lambda \cap q C^{-1} M_{2}(Z): q \Lambda\right]|C|^{-k} \int_{0}\left|\theta+i T^{-1}\right|^{-k} \sum_{\substack{P \\
(*)}} a^{\prime}(P) e(\sigma(P \tau) / q) \\
& \times e(-\sigma(T \theta)) \sum_{G} b(G ; C, \tau) S\left(G, P, T ; C,\left(\begin{array}{ll}
\alpha & \beta \\
C & \delta
\end{array}\right)\right) d \theta,
\end{aligned}
$$

where

$$
S\left(G, P, T ; C,\left(\begin{array}{ll}
\alpha & \beta \\
C & \delta
\end{array}\right)\right)=\sum_{D_{i}} e\left(\sigma\left(A_{i} C^{-1} G+P A_{i} C^{-1} q^{-1}+T C^{-1} D_{i}\right)\right)
$$

Here D_{i} runs over the set $\left\{D \in M_{2}(Z) \bmod \{C S \mid S \in \Lambda, C S \equiv 0 \bmod q\} \mid(C, D)\right.$ $=1, D \equiv \tilde{D} \bmod q\}$ and A_{i} is a matrix which satisfies

$$
M=\left(\begin{array}{cc}
A_{i} & * \\
C & D_{i}
\end{array}\right) \equiv\left(\begin{array}{ll}
\alpha & \beta \\
C & \delta
\end{array}\right) \bmod q, M \in \Gamma .
$$

G runs over $\Lambda^{*} /(\mathbb{(})$ as in Lemma 1. $P \in \Lambda^{*}$ satisfies the condition ($*$):
(*) $\quad \sigma(P S) \equiv 0 \bmod q$ for $S \in \Lambda$ such that ${ }^{t} C S \equiv 0 \bmod q$.
The above $S\left(G, P, T ; C,\left(\begin{array}{cc}\alpha & \beta \\ C & \delta\end{array}\right)\right)$ can be represented by the above generalized Kloosterman sums.

Proposition 2. Let

$$
C=U\left(\begin{array}{cc}
c_{1} & 0 \\
0 & c_{2}
\end{array}\right) V, c_{1} \mid c_{2}, U, V \in G L(2, Z)
$$

for natural numbers c_{1}, c_{2}, and $\tilde{D} \in M_{2}(Z)$. Under Assumptions 1, 2 we have

$$
\begin{aligned}
& \left|\sum_{\substack { D \\
\begin{subarray}{c}{D=D \\
(C, D)=1{ D \\
\begin{subarray} { c } { D = D \\
(C , D) = 1 } }\end{subarray}} \alpha(C, D)\right| \\
& \ll|C|^{-k} c_{1}^{2} c_{2}^{1-\kappa+\varepsilon}\left(c_{2}, T\left[V^{-1}\right]_{4}\right)^{x} \int_{\theta}\left\|\theta+i T^{-1}\right\|^{-k} \exp \left(-\kappa_{1} m(\operatorname{Im} \tau)\right) d \theta \\
& \ll|T|^{k-3 / 2} c_{1}^{2-k} c_{2}^{1-\kappa-k+e}\left(c_{2}, T\left[V^{-1}\right]_{4}\right)^{x} \\
& \times\left\{\begin{array}{cc}
c_{2}^{k-2} t_{1}^{1-k / 2} & \text { if } c_{2} \leq \sqrt{t_{1}} \\
1 & \text { if } c_{2}>\sqrt{t_{1}},
\end{array}\right.
\end{aligned}
$$

where ε is any positive number, $T\left[V^{-1}\right]_{4}$ stands for the (2, 2)-entry of $T\left[V^{-1}\right], \kappa_{1}$ is a positive constant and $\tau=-{ }^{t} C^{-1}\left(\theta+i T^{-1}\right)^{-1} C^{-1}$ and

$$
m(Y)=\min _{\substack{x \in Z^{2} \\ x \neq 0}} Y[x] \quad \text { for positive } Y \in \boldsymbol{R} \Lambda
$$

By using Lemma 2, we have
Proposition 3. Let $\tilde{D} \in M_{2}(Z)$. Under Assumptions 1, 2 we have

$$
\sum_{\substack{M=\left(\begin{array}{c}
A B) \in \Gamma(\infty) \backslash \backslash \\
|\nmid| \neq D, D \equiv D \\
\bmod q
\end{array}\right.}} \alpha(C, D)=O\left(t_{1}^{(3-k) / 2-\kappa / 2+\varepsilon}|T|^{k-3 / 2}\right)
$$

By using Lemma 3 and a method in [3] we have
Proposition 4. Let $\tilde{d} \in Z$. Then we have

$$
\sum \alpha\left(\left(\begin{array}{ll}
c & 0 \\
0 & 0
\end{array}\right)^{t} U,\left(\begin{array}{ll}
d & 0 \\
0 & 1
\end{array}\right) U^{-1}\right)=O\left(t_{1}^{2-k+c}|T|^{k-3 / 2}\left(\sum_{r \mid t_{4}} r^{2-k} d(r) \log r\right)\right)
$$

where c, d run over Z so that $(c, d)=1, d \equiv \tilde{d} \bmod q$ and $c \neq 0$, and

$$
U \in G L(2, Z) /\left\{\left. \pm\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) \right\rvert\, n \in Z\right\}, \quad \text { and } \quad d(r)=\sum_{n \mid r} 1
$$

Summing up, we have
Theorem. Let $f(Z)=\sum_{0 \leq P \in 1^{*}} a(P) e(\sigma(P Z))$ be a modular form of degree 2, level q and weight $k \geq 3$ whose constant term vanishes at each cusp. Under Assumptions 1, 2 we have

$$
\begin{aligned}
a(T)= & O\left(t_{1}^{(3-k) / 2-\kappa / 2+\varepsilon}|T|^{k-3 / 2}\right) \\
& \times\left\{\begin{array}{ll}
1 & k \geq 4 \\
\sum_{r \mid t_{4}} r^{-1} d(r) \log r & k=3
\end{array}\right\}, \quad \text { if } t_{1} \gg 0,
\end{aligned}
$$

where $T=\left(\begin{array}{ll}t_{1} & t_{2} \\ t_{2} & t_{4}\end{array}\right) \in \Lambda^{*}$ with $0<t_{1}, 2\left|t_{2}\right| \leq t_{1}, t_{1} \leq t_{4}$.
Corollary. Let A, B be integral symmetric positive definite matrices of degree 6, 2 respectively. Suppose that Assumptions 1, 2 are true and that $A[X]=B$ is soluble in $M_{6,2}\left(Z_{p}\right)$ for every prime p, and that for any fixed number $\left.t, p^{t}\right\rceil|B|$ if a prime p divides $2|A|$. Then $A[X]=B$ is soluble in $M_{6,2}(Z)$ if b_{1} is sufficiently large and either $|B|$
$<\exp \left(b_{1}^{\kappa / 5}\right)$ or $\sum_{r \mid b_{4}} r^{-1} d(r) \log r<t$ where $B=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{2} & b_{4}\end{array}\right)$ and $0<b_{1}, 2\left|b_{2}\right|$ $\leq b_{1}, b_{1} \leq b_{4}$.

Remark. $\quad \sum_{r \mid 6} r^{-1} d(r) \log r \ll \min \left(d(b),(\log b)^{2}\right)$. If degree of A ≥ 7, then it is known that the local solubility of $A[X]=B$ yields the global solubility if $m(B) \gg 0$.

Detailed proofs will appear elsewhere.

References

[1] T. Estermann: Vereinfacher Beweis eines Satzes von Kloosterman. Hamb. Abh., 7, 82-98 (1930).
[2] J. S. Hsia, Y. Kitaoka, and M. Kneser: Representations of positive definite quadratic forms. J. reine angew. Math., 301, 132-141 (1978).
[3] Y. Kitaoka: Modular forms of degree n and representation by quadratic forms. II (to appear in Nagoya Math. J.).
[4] H. D. Kloosterman: Asymptotische Formeln für die Fourierkoeffizienten ganzer Modulformen. Hamb. Abh., 5, 337-352 (1927).
[5] H. Maaß: Siegel's modular forms and Dirichlet series. Lect. Notes in Math., vol. 216, Springer-Verlag (1971).
[6] S. Raghavan: Modular forms of degree n and representation by quadratic forms. Ann. of Math., 70, 446-477 (1959).
[7] H. Salié: Zur Abschätzung der Fourierkoeffizienten ganzen Modulformen. Math. Z., 36, 263-278 (1931).
[8] C. L. Siegel: On the theory of indefinite quadratic forms. Ann. of Math., 45, 577-622 (1944).

