81. A Note on Quasilinear Evolution Equations. II

By Kiyoko FURUYA

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1981)

§ 1. Introduction. In this note we prove local existence and analyticity in t of solutions to quasilinear evolution equations

(1.1)
$$du/dt + A(t, u)u = f(t, u), \quad 0 < t \le T,$$

(1.2) $u(0) = u_0.$

The unknown, u, is a function of t with values in a Banach space X. For fixed t and $v \in X$, the linear operator -A(t, v) is the generator of an analytic semigroup in X and $f(t, v) \in X$.

We consider the equation (1.1) under the assumptions that the domain $D(A(t, v)^h)$ of $A(t, v)^h$ is independent of t, v for some h>0 and $A(t, A_0^{-\alpha}v)^h$ is the Hölder-continuous in v in the sense that

 $||A(t, A_0^{-\alpha}v)^h A(t, A_0^{-\alpha}w)^{-h} - I|| \leq C |v-w|^{\eta},$

while in the previous paper [1] we discussed it in the case that $A(t, A_0^{-\alpha}v)^{\hbar}$ is the Lipschitz-continuous.

We use the same notations as in [1].

The author wishes to express her hearty thanks to Prof. Y. Kōmura for his kind advice and encouragement.

§ 2. Assumptions. We first define $a \in X$. We shall make the following assumptions:

a-1) There exist h=1/m, where *m* is an integer, $m\geq 2$, and $0\leq \alpha$ <h/2 such that $A_0^{-\alpha}$ is a well-defined bounded linear operator from *X* to *X* and $u_0 \in D(A_0^{1+\alpha})$ where $A_0 \equiv A(0, u_0)$.

a-2) There exists $T_0 > 0$, such that $A_{u_0}(t) \equiv A(t, u_0)$ is a well-defined operator from X to X for each $t \in [0, T_0]$.

a-3) For any $t \in [0, T_0)$ the resolvent of $A_{u_0}(t)$ contains the left half-plane and there exists C_1 such that $\|(\lambda - A_{u_0}(t))^{-1}\| \leq C_1(1+|\lambda|)^{-1}$, Re $\lambda \leq 0$, and the domain, $D(A_{u_0}(t))$, of $A_{u_0}(t)$ is dense in X.

a-4) The domain $D(A_{u_0}(t)^h) = D$ of $A_{u_0}(t)^h$ is independent of $t \in [0, T_0)$ and there exist $C_2, C_3, \sigma, 1-h+\alpha < \sigma \leq 1$ such that

 $||A_{u_0}(t)^h A_{u_0}(s)^{-h}|| \leq C_2 \qquad t, s \in [0, T_0),$

 $\|A_{u_0}(t)^h A_{u_0}(s)^{-h} - I\| \leq C_3 |t-s|^{\sigma}$ $t, s \in [0, T_0).$

a-5) $f_{u_0}(t) \equiv f(t, u_0)$ is defined and belongs to X for each $t \in [0, T_0)$, $f_{u_0}(0) \in D(A^h)$ and there exists C_4 such that

$$||f_{u_0}(t) - f_{u_0}(s)|| \leq C_4 |t-s|^{\sigma}$$
 $t, s \in [0, T_0].$

These constants $C_i(i=1, 2, 3, 4)$ do not depend on t, s. Then we can apply Kato's results [3]. It follows from Kato's theorem that

there is a unique solution of

(#)
$$\begin{cases} d\hat{u}/dt + A_{u_0}(t)\hat{u} = f_{u_0}(t) \\ \hat{u}(0) = u_0. \end{cases}$$

Set

(2.1)
$$a = \frac{d^+}{dt} A_0^{\alpha} \hat{u}(t)|_{t=0},$$

where \hat{u} is the solution of (#).

In the following $\Sigma(\phi; T) \equiv \{t \in C; |\arg t| < \phi, 0 \leq |t| < T\}$ is a sector in the complex plane.

Next we shall make the following assumptions with a;

A-1) = a-1).

A-2) A_0^{-1} is a completely continuous operator from X to X.

A-3) There exist R > 0, $T_0 > 0$, M > 0 and $\phi_0 > 0$ such that $A(t, A_0^{-\alpha}w)$ is a well-defined linear operator from X to X for each $t \in \Sigma(\phi_0; T_0)$ and $w \in N \equiv \{w \in X; \|w - A_0^{-\alpha}u_0\| \le R\} \cap Y \cup \{A_0u_0\}$, where

$$Y = \bigcup_{t>0} \{v \in X; \|v - (A_0^{\alpha}u_0 + ta)\| < tM\} (0 < M \leq \|a\|).$$

A-4) For any $t \in \Sigma(\phi_0; T_0)$ and $w \in N$

(2.2) {the resolvent of $A(t, A_0^{-\alpha}w)$ contains the left half-plane and there exists C_1 such that $\|(\lambda - A(t, A_0^{-\alpha}w))^{-1}\| \leq C_1(1+|\lambda|)^{-1}$, Re λ

 ≤ 0 , and the domain, $D(A(t, A_0^{-\alpha}w))$, of $A(t, A_0^{-\alpha}w)$ is dense in X.

A-5) The domain $D(A(t, A_0^{-\alpha}w)^h) = D$ of $A(t, A_0^{-\alpha}w)^h$ is independent of $t \in \Sigma(\phi_0; T_0)$ and $w \in N$.

A-6) There exist C_2 , C_3 , σ , $1-h+\alpha < \sigma \le 1$, $\alpha < \alpha'' < h/2$, $(1-h+\alpha'')/(1-\alpha) < \eta < 1$ such that

(2.3) $||A(t, A_0^{-\alpha}w)^h A(s, A_0^{-\alpha}v)^{-h}|| \leq C_2 \quad t, s \in \Sigma(\phi_0; T_0), \quad w, v \in N.$

(2.4) $||A(t, A_0^{-\alpha}w)^h A(s, A_0^{-\alpha}v)^{-h} - I|| \leq C_3 \{|t-s|^{\sigma} + ||w-v||^{\eta}\}$

 $t, s \in \Sigma(\phi_0; T_0), w, v \in N.$

A-7) $f(t, A_0^{-\alpha}w)$ is defined and belongs to X for each $t \in \Sigma(\phi_0; T_0)$ and $w \in N$, and there exists C_4 such that

(2.5)
$$\|f(t, A_0^{-\alpha}w) - f(s, A_0^{-\alpha}v)\| \leq C_4 \{|t-s|^{\sigma} + \|w-v\|^{\sigma}\}$$

 $t, s \in \Sigma(\phi_0; T_0), \quad w, v \in N.$

A-8) The map $\Phi: (t, w) \longmapsto A(t, A_0^{-\alpha}w)^h A_0^{-h}$ is analytic from $(\Sigma(\phi_0; T_0) \setminus \{0\}) \times (N \setminus \{A_0^{\alpha}u_0\})$ to B(X).

A-9) The map $\Psi: (t, w) \longmapsto f(t, A_0^{-\alpha}w)$ is analytic from $(\Sigma(\phi_0; T_0) \setminus \{0\}) \times (N \setminus \{A_0^{\alpha}u_0\})$ into X.

These constants $C_i(i=1, 2, 3, 4)$ do not depend on t, s, v, w.

§ 3. The main results. We first restrict t to be real.

Theorem 1 (local existence). Let the assumptions A-1)-A-7) hold with $[0, T_0)$ instead of $\Sigma(\phi_0; T_0)$. Then there exists $S_1, 0 < S_1 \leq T_0$, such that there exists at least one continuously differentiable solution of (1.1) for $0 < t < S_1$ that is continuous for $0 \leq t < S_1$ and satisfies (1.2).

349

Remark. In the case h=1, Sobolevskii [5] proved same results under similar assumptions to ours.

Theorem 2 (analyticity in t). Let the assumptions A-1)-A-9) hold. Then there exist T, $0 < T \leq T_0$, ϕ , $0 < \phi < \phi_0$, K > 0, k, 1-h < k < 1 and at least one continuous function u mapping $\Sigma(\phi; T)$ into X such that $u(0) = u_0$, $u(t) \in D(A(t, u(t)))$ and $||A_0^{\alpha}u(t) - A_0^{\alpha}u_0|| < R$ for $t \in \Sigma(\phi; T) \setminus \{0\}$, $u : \Sigma(\phi; T) \setminus \{0\} \rightarrow X$ is analytic, du(t)/dt + A(t, u(t))u(t) = f(t, u(t)) for $t \in \Sigma(\phi; T) \setminus \{0\}$, and $||A_0^{\alpha}u(t) - A_0^{\alpha}u_0|| \leq K |t|^k$ for $t \in \Sigma(\phi; T)$.

The sketch of the proofs are given in § 4. The complete proofs of our results will be published elsewhere.

§4. Sketch of proofs. Proof of Theorem 1. Let $\zeta \in ((1-h+\alpha'')/\eta, 1-\alpha)$, $0 < \varepsilon < 1$ and L > 0. We consider the set F(s) of all functions v(t), defined on [0, S), which satisfy the following:

$$egin{aligned} &v(0)\!=\!A_0^st u_0,\ &\|v(t_1)\!-\!v(t_2)\|\!\leq\! L|t_1\!-\!t_2|^arsigma & ext{for any }t_1,\ t_2\!\in\![0,S),\ &\|v(t)\!-\!(A_0^st u_0\!+\!ta)\|\!\leq\! Mt(1\!-\!arsigma) & ext{for }t\in\![0,S). \end{aligned}$$

Then for sufficiently small positive S and for all $t \in [0, S)$, we get $v(t) \in N$ for any function $v(t) \in F(S)$. Hence the operator $A_v(t) = A(t, A_0^{-\alpha}v(t))$ is well defined for $t \in [0, S)$. Set $f_v(t) = f(t, A_0^{-\alpha}v(t))$ and $w_{v,\alpha}(t) = A_0^{\alpha}w_v(t)$, where w_v is the unique solution of

$$\begin{cases} dw_v/dt + A_v(t)w_v = f_v(t) & t \in [0, S), \\ w_v(0) = u_0. \end{cases}$$

Then using the linear theory of Kato [3] and some estimates in [2], we get $w_{v,a} \in F(S)$ for sufficiently small S.

We define a transformation $T: v \mapsto w_{v,a}$ for $v \in F(S)$. Then T maps F(S) into itself. We now consider F(S) as a subset of the Banach space $\tilde{Y} \equiv C([0, S); X)$ consisting of all the continuous functions v(t) from [0, S) into X with norm $|||v||| = \sup_{0 \le t < S} ||v(t)||$. Then T is a continuous operator in F(S) with the topology induced by \tilde{Y} . From the assumption A-2), we obtain that the set TF(S) is contained in a compact subset of \tilde{Y} . Therefore, by the Schauder's fixed point theorem there exists a fixed point v in F(S): Tv = v. Then $u = A_0^{-a}v$ is a solution of (1.1), (1.2).

Proof of Theorem 2. From (2.2) there are constants C_5 , $\phi_1 > 0$, $T_1 > 0$ such that for $t \in \Sigma(\phi_1; T_1)$, $w \in N$ and $|\theta| < \phi_1$ the resolvent of $e^{i\theta}A(t, A_0^{-\alpha}w)$ contains the left half-plane and

$$\|(\lambda - e^{i\theta}A(t, A_0^{-\alpha}w))^{-1}\| \leq C_5(1+|\lambda|)^{-1} \qquad \text{Re } \lambda \leq 0.$$

We let $\phi = \min \{\phi_0, \phi_1\}$. We consider the set E(S) of all functions $\tilde{v}(t)$, defined on $\Sigma(\phi; S)$, which satisfy the following:

$$\begin{split} &\tilde{v}: \varSigma(\phi;S) \setminus \{0\} \longrightarrow X ext{ is analytic,} \\ &\tilde{v}(0) = A_0^s u_0, \\ &\| \tilde{v}(t) - \tilde{v}(0) \| \leq L |t|^{\varsigma} \quad ext{ for any } t \in \varSigma(\phi;S), \end{split}$$

 $\begin{aligned} \|\tilde{v}(t_1) - \tilde{v}(t_2)\| \leq L |t_1 - t_2|^{\varepsilon} & \text{for any real } t_1, \ t_2 \in [0, S), \\ \|\tilde{v}(t) - (A_0^{\varepsilon} u_0 + ta)\| \leq M |t| \ (1 - \varepsilon) & \text{for } t \in \Sigma(\phi; S). \end{aligned}$

Then, in the same way as in the proof of Theorem 1 using $\tilde{v} \in E(S)$, we can prove that $\tilde{w}_{\tilde{v},a} \in E(S)$ for sufficiently small S, where $\tilde{w}_{\tilde{v},a}(t) = A_0^{\alpha} \tilde{w}_{\tilde{v}}(t)$ and $\tilde{w}_{\tilde{v}}$ is the unique solution of

$$\begin{cases} d\tilde{w}_{\tilde{v}}/dt + A_{\tilde{v}}(t)\tilde{w}_{\tilde{v}} = f_{\tilde{v}}(t), \qquad t \in \Sigma(\phi; S), \\ \tilde{w}_{\tilde{v}}(0) = u_0. \end{cases}$$

Next, we consider the set $F_0(S)$ of all functions v(t) defined on [0, S)such that for any $t \in [0, S)$ $v(t) = \tilde{v}(t)$ for some $\tilde{v} \in E(S)$. We define a transformation $\tilde{T}: \tilde{v} \mapsto \tilde{w}_{\tilde{v},a}$ for $\tilde{v} \in E(S)$. Then \tilde{T} maps E(S) into itself. Using the operator \tilde{T} we define a transformation $T: F_0(S) \to F_0(S)$ with $(Tv)(t) = (\tilde{T}\tilde{v})(t)$ for $t \in [0, S)$. We now consider $F_0(S)$ as a subset of $\tilde{Y} \equiv C([0, S); X)$. Therefore there exist a fixed point $v \in F_0(S)$ such that Tv = v and $\tilde{v} \in E(S)$ such that $\tilde{v}(t) = v(t)$ for $t \in [0, S)$. By the analyticity of \tilde{v} we get $\tilde{T}\tilde{v} = \tilde{v}$. Putting $u = A_0^{-a} \tilde{v}$, we can easily prove that usatisfies the conclusions of Theorem 2.

References

- K. Furuya: A note on quasilinear evolution equations. Proc. Japan Acad., 56A, 256-258 (1980).
- [2] ——: Analyticity of solutions of quasilinear evolution equations. Osaka J. Math. (to appear).
- [3] T. Kato: Abstract evolution equations of parabolic type in Banach and Hilbert spaces. Nagoya Math. J., 5, 93-125 (1961).
- [4] F. J. Massey, III: Analyticity of solutions of nonlinear evolution equations. J. Diff. Eqs., 22, 416-427 (1976).
- [5] P. E. Sobolevskii: Equations of parabolic type in Banach space. Trudy Moscow Mat. Obsc., 10, 297-350 (1961) (in Russian); Amer. Math. Soc. Transl., II-49, 1-62 (1965) (English translation).