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79. A Remark on the Hadamard Variational Formula. II
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Department of Mathematics, Tokyo Institute. of Technology

(Communicated by K.Ssaku OSlDA, M. J. A., Sept. 12, 1981)

1. Introduction. Let f(x) be a real-valued C-unction o x in
R. Let tg={x e Rlf(x)t} or any real t. Then its boundary is
={x e R[f(x)=t}. We assume the ollowing assumptions or f"

(A.1) 9. is a bounded domain diffeomorphic to the unit disc.
(A.2) All values t e [-2, 0)[J (0, 2] are regular values o f.
(A.3) tg contains only one critical point x o f, where f(x)=0

and f has the non-degenerate Hessian o the index n--1.
For any t e [--1, 0)U(0, 1], we consider the ollowing boundary

value problem or u"

(1.1) (-l)u(x)=w(z), for x e

u(x)=0, for x e(1.2)

where , is the outer unit normal to ’t and e C. If 0, u is uniquely
determined by w and we put u(x)=N(,)w(x). Let N(2, x, y) be the
integral kernel function o the mapping" wN(,)w, i.e.,

(1.3) Nt(2)w(x)-- [ Nt(2, x, y)w(y)dy.
d9t

It is well known rom the Hadamard variational ormul that the
unction N(, x, y) is continuously differentiable with respect to t if
t=/=0 and x, y e 9_x. The Hadamard variational ormul implies that

(1.4) dY(2, x, y)
dt

I N(, z, y) N(,, z, x) 1 da(z)
Igrad f(z)l

/ (/’zN(2, z, y), /7N(2, z, x)}
grad f(z)

da(z)

where dz is the volume element o:f ., ’tzNt(] z, y) denotes the component
tngent to , o the gradient vector o N(2, z, y) with respect to z nd
(, } denotes the inner product in the tangent vector space to -. See,
or instance, Hadamard [6], Aomoto [1], Peetre [8] nd Fujiwara-
Ozawa [3].

For any small e0, we hve

(1.5) N1(2, x, y)--No(2, x, y)=fl dN(2 x, y)dr
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i x and y e 9_. Hence the ollowing natural question arises"
(Q) Can one replace e in (1.5) by -1 ?

This is not a trivial question, because 9 is connected for t0 but 9
has two connected components or t0. Cf. Milnor [7].

The aim o this note is to give an affirmative answer to the ques-
tion (Q) above:

Theorem. If 20 and x, y -1, we have

(1.6) -11 --N(,, x, y) dt

and

(1.7) NI(, x, y)--N_(,, x, y)-- Nt( x, y)dt.
-1

Remark. A similar formula for the Green kernels of Dirichlet
problem was discussed earlier in [2].

2. Weak solution to the boundary value problems. Let
Hn()t)--- {W e L()t) Dw e L(t) for

be the Sobolev space o order m_ 0. Let w e L(/2). Then the solution
u(x) o the boundary value problem (1.1), (1.2) is characterized as o1-
lows" u e H([2t) and or any e H(9),

(2.1) , [7u(x)’(x)+ 2u(x)(x)ldx=, w(x)(x)dx.
This ormulation is valid even in the case t-0. We can thus define
Nt(2, x, y) or t-0 too. We have, rom (2.1), well known a priori
estimate or u=N()w.

Lemma 1. For any t e [--1, 1] and w L([2), we have

(2.2) I ,P’Nt(2)w(x)l dxq-2 I [N(2)w(x)[ dx_2- I lw(x)l dx.

:. Proof of the theorem. If t 0, tg has two connected com-
ponents, which we denote by 9 and/2. We may assume that
and 99] for t<0. Thus, the space H(tg) is the direct sum

H’(9):H’(9)H (9).
Since each o nd has strong cone property, there exists a linear
continuous extension map H’(/2)-+H’(R). Composing this with the
restriction map H’(R)-+H’(/2), we have linear continuous extension
map H (t)---+H’(). Similarly we have a continuous linear extension
mp H’()--+H’(). Thus we have

Lemma 2. If t<O, there exists a linear extension map E" H’(2)
--H(2o) such that for any u e
(3.1) [[Etu[ H(o) _K [[ul H()"
Here K is a positive constant independent of t and u.

Lemma 3. For any w L(9_), we have
lira EN(2)w N0(2)w
t0

in the strong topology of L([2o) and in the weak topology of H(2o).
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Proof. By Lemmas 1 and 2, {ENt()w}<o forms a bounded set o
H(t0). Let {t}: be any sequence such that t/0. Then, there exists
a subsequence {s}, such that EN(2)w=u converges to a certain
unction g e H(90) strongly in L(90) and weakly in H’(90). We have
only to prove that g=No()w, which is independent o the sequence
{t}. Let be an arbitrary unction in H(90). Then its restriction
to 9t, t0, belongs to H(9). Thus, i t0, we have, from (2.1),

(3.2) [ [gu(x)g(x)+ 2u(x)(x)] dx= [ w(x)(x)gx.
3

The Schwartz’ inequality gives the estimate

(3.3) Io, [u(x)(x)+u(x)(x)] dx
[I 1

The right hand side tends to 0 as ] goes to . Hence

Thus we have g=No(2)w. This proves Lemma 3.
For any w e L(9o), N(2)w H([2) 2or t)0. Let RoN(2)w be its

restriction to tg0. Then RoN()w e H([2o).
Lemma 4. For any w e L(9o), we have

lim RoN(2)w-- No(2)w
t\o

in the strong topology of L(9o) and in the weak topology of Hl(9o).
Proof. First note that {RoNt(2)w}t>o orms a bounded set o H(90).

Let (t}= be any sequence such that t0. Then, there exists a sub-
sequence {s} such that RoN()w=v converges to a certain unction
g e H(90)weakly in H(90) and strongly in L(/20). We have only to
prove that g=No(2)w, which is independent o the sequence (s}. Let
e H(R). Then as in the prooi o Lemma 3, we have

w(x)(x)dx=lim [gv(x)g(x)/2vj(x)(x)]dx

=_[. o [gg(x)g(x)+ 2g(x)(x)]dx.

In the case n_3, the restriction mapping H(R)-->H(2o) is surjective.
In the case n=2, it is not surjective but its image is dense in H(tg0).
C. Grisvard [5]. Therefore or any e H(90), we have
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;o w(x)q(x)dx-o [Vg(x)V(x)+2g(x)q(x)]dx.

This means that g-No(2)w. Lemma 4 is proved.
We can prove convergence of the kernel function N(, x, y) itself

as t0.
Lemma 5. Assume that x and y e o Then,
(i) lira, 0 N,(], x, y)-N0(, x, y)= 0,
(ii) lira, 0 N(, x, y)-- N0(, x, y) 0.

Proof. Let F(z) be a parametrix o (-A), i.e.,
(-A)P(z) a(z) +(z),

where w(z) e C(R). We may ssume that F(z-- x) and N(z--y) vanish
i z e 90. Let H,(, x, y)= N0(, x, y)-N(, x, y). Then
(3.4) (-)H,(, x, y)=0.
Therefore,

H(2, x, Y)=.[o_ _.[o Ht(, , )[(]--A)F(-- x)--w(-- x)]

[(2-- A,)F(--y)--w(--y)]d$d

The last equality results from (3.4) and integration by parts. Since
(-x) and (-y) are functions in L(9o), Lemma 3 proves (i).
Similarly (ii) follows from Lemma 4.

Lemma 6. For any x and y e 9o, we have

N(2, x, y)--No(2, x, y)= lim Nt(2, x, y)dt
0

N0(2, , )-N_(2, , )=lim N(2, , )gt.
0 -1

Proof. These are diree consequences o Lemma and he
Hadamard variational ormula.

LemmaT. or p _, we

Proof. As a consequence of (1.4), we have he Hadamard varia-
tional inequality (d/dt)N(2, , )20 for any e D_ and re0. On
other hand, we have

0

lira N(2, , z)dt=No(2, , z)--N_(2, , ).
0

Lemma 7 follows from hese.
Proof of Theorem. rom (1.4), we have Hadamard’s variational

inequality
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for :/: O.
[-tNt(2, x, y)_ [Nt(2, x, x)]l/2[-Nt(
Thus for any )0, we have

This and Lemma 7 prove that

Similarly, we have

These prove (1.6).
been proved.

dt4 oo.

(1.6) and Lemma 6 prove (1.7).

Y,

Y, y)dt] 1/

The theorem has
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