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94. A Remark on Certain Stochastic Control Problem

By Masatoshi FUJISAKI
Kobe University of Commerce

(Communicated by K6saku YOSIDA, M. ft. A., Oct. 12, 1981)

We consider the following problem of stochastic control in which
the system is given by the Ito-type stochastic differential equation"
dXt--(t, Xt)dt +dB,, where is a bounded measurable function, and
the cost function to be minimize with respect to is of the form"

E[f L(t, IX])dt+ h(’X[)].
Our aim is to obtain an explicit Corm of an optimal control. In addi-
tion, as corollary, we can show the existence of solutions o certain
partially differential equations o parabolic type with singular drift
coefficients.

1. Representation of optimal control. Let T be a fixed positive
time and assume that Os_T. Consider the following d-dimensional
stochastic differential equation"

(1.1) dX,= q(t, Z)dt+ dBt,
[X--x,

where (Bt), O<_t<_T, is a Brownin motion started 2rom 0, is Borel
unction rom [0, T] R to R such that sup, I(s, x)]__<l, and x is a
vector (fixed) in R. By we mean the class of such ’s and any ele-
ment o is called an admissible control. For any s e [0, T), (s)
stands r the restriction of on [s, T] R. Let us note that 2or all

e (s) there exists a unique strong solution o Eq. (1.1) in pathwise
sense ([4]). By X,,* we mean the solution o Eq. (1.1) associated with

e V(s). The cost unction associated with is given by the 2ormula"

(1.2) J(s x, +)= L(t, X..*)dt+h(X,x,*)

where L(s, x) and h(x) are Borel functions from [0, T] R* to R/ and
from R* to R/ respectively. An element 0 e g is called optimal if +0
satisfies the relation"
(1.3) J(s, x, +0)= inf J(s, x, +), for all (s, x).

r(s)

Now we need the 2ollowing notations" Q=(0, T)R and )0
[0, T] R C(R) is the class of unctions with continuous partially

derivatives o all orders =<] on R; or QcR+, C,(Q) means the set
of (t, x) with /t, 3/3x, /3x3x, i, j= 1, ., d, continuous on Q
C,(Q) is the class of C e C’(Q) such that ](t,x)]<=c(l+[xl) 2or all
(t, x) e Q, where c and k are constants nt depending upon (t, x), when
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has this property we say that satisfies the polynomial growth con-
dition.

Let U= {x e R Ixlgl} and consider the following Bellman equa-
tion"

(1.4) Ov +--Av+min(a,P’v)+L(s,x)=O, (s,x)eQ,
with the Cauchy data
(1.5) v(T, x)= h(x), x e R.

Suppose the following conditions"
(H.1) a) L e C’I(Q), moreoverL andLx (=3L/3x, l_i_d) satisfy

the polynomial growth condition, b) h e C(R), moreover h and h
satisfy the polynomial growth condition.
Fleming-Rishel ([1], p. 169-170, Theorems 6.2 and 6.3) proved that if
(H.1) holds then Eq. (1.4) with the Cauchy data (1.5) has a unique
solution v in C.:(Q) with v continuous in Q0, and moreover there exists
an optimal control in . In this case we can show that i v is such a
unique solution then
(1.6) v(s, x)-inf J(s, x, ), (s, x) QO.

In the following we wish to obtain an explicit form of an optimal
control when L and h are particular forms, i.e. we now assume, in
addition to (H.1)

(H.2) L(s, x)=L(s, Ixl) and h(x)=(]xl) for all (s, x) e Q0 where L
and/ are Borel functions of [0, T] R to R and R to R respectively.
It is not difficult to show that if (H.2) holds then the unique solution
v of Eq. (1.4) is also written as v(s, x)--(s, ]xl) for (s, x)
is a Borel function of [0, T] R/ to R. In fact, this follows from the
fact that all. the terms of (1.4) are rotation invariants and from the
uniqueness of solutions of Eq. (1.4).

If la]=<l and v(s, x)--(s, [xl) then by Schwarz’s inequality,

l(a, x)l<=l v(s, x)l--la /ar(s, Ixl)l (r--Ix[,
Define a unction * of Q0 to R by the ormula"

--x/]xl if 3/3r(s, lxl)>__O, x:/:O,
(1.7) *(s, x)= x/ixl if a/ar(s, Ixl)<O, x:/:O,

0 otherwise,
then * e and for all (s, x) e Q0, (., gv)(s, x)- -Ia/3r(s, Ixl)l. There-
fore * satisfies the ollowing equality"
(1.8) (*, gv)(s, x)= min (a, gv)(s, x), (s, x) QO.

By the Ito-formula and (1.8), it is easily shown that v(s, x)=J(s, x, *),
then by (1.6) this amounts to say that * is optimal. Thus we have
the following theorem.

Theorem 1.1. Under the hypotheses (H.1) and (H.2), Eq. (1.4)
with the Cauchy data (1.5) has a unique solution v in C,(Q) with v
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continuous in QO, such that v(s,x)-(s,]x]) for all (s,x)e QO, where
(s, r) is a function of C,:((O, T)R/). Moreover 4x*, defined by the
formula (1.7), is optimal.

By (1.4) and (1.8), we have the following equation"

-y-. +-v+( ,v)+L(s, Ixl)=o, (s,x)e Q0,

(v(T, x) ]7(1 x I), x e R
Since v(s, x)-(s, Ixl) from Theorem 1.1 then two equalities,

Av(s x)- d-1
r 3r

and

(*, v)(s, x)= sgn --r )---(s, Ixl),

imply that is a solution in C,((0, T) R/) of the ollowing semilinear
partial differential .equation of parabolic type"

(1.10) as 2 ar 2--
OsT, rO,

with the Cauchy data"
(1.11) (T, r)=h(r), O<r<,
where sgna=l if a0, =--1 i a40. Then we have the ollowing.

Corollary 1.2. Under the same conditions as Theorem 1.1, is
a solution in C’((O,T)xR+) of Eq. (1.10) with the Cauchy data
O.1).

Remark 1.1. If e is optimal then 0=. a.e. on the set
{(s, x) ;( /3r)(s, x)0}, where a.e. means almost everywhere with
respect to R* dimensional Lebesgue measure.

2. Increasing case. In this paragraph we further provide the
ollowing condition"

(H.3) If rr’ then L(s, r)L(s, r’) and h(r)gh(r’) or all s.
Then we can show that any solution of Eq. (1.10) with the Cauchy data
(1.11) is increasing with respect to r or all s. In fact, suppose that
3/3r0 for some point P=(s, r) such that OsT, Or, then we
can take some neighborhood D of p0 such that 3/3r0 on D. Eq.
(1.10) on D is as ollows

+ + 0.
3s 2 3r 2r

Differentiating Eq. (2.1) relative to r, we obtain the ollowing"

(2.2) 0+ 1 0 + 2r + 1 + (, r) O,
Os Or Or 2r

where =3/r. From the standard arguments it ollows that
L/rO then 0 is impossible. Therefore it holds that
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for 11 (s, r) e [0, T] X (0, c). Since is a solution in C,((0, T) R /) of
Eq. (1.10)by Corollary 1.1, then 3/3r>=O. In this case, * of (1.7)
is equal to ’, defined by (2.3) below.
(2.3) ’(s, x)=-x/Ixl if x=/=0, =0 if x=0.
Thus we can summarize as follows.

Theorem 2.1. Suppose that (H.1)-(H.3) hold, then any solution
(s, r) of Eq. (1.10) with the Cauchy data (1.11) is increasing with
respect to r for all s. In this case, ’, defined by (2.3), is optimal.

Remark 2.1. 1) Ikeda-Watanabe already proved the fact that

’ of (2.3) is optimal under the assumptions (H.2) and (H.3) but without
(H.1) (see [3, 2]).

2) In Theorem 2.1, especially if L(s,r) and t(r) are strictly
increasing w.r.t, r, then so (s, r) is. This result is deduced by maxi-
mum principle for linear partial differential equations of parabolic
type (cf. [2, Chap. 2]).

3) In the case of 2), we can conclude by Remark 1.1 that if 0 is
optimal then 0=, a.e. on [0, T] R.
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