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Department of Mathematies, Chiba University
(Communicated by Ko6saku YoSIDA, M. J. A., Jan, 12, 1982)

1. Introduction. In this note, we will investigate the equation

1.1 a, Yy (@+n)+e, Y@+n—1+- - +ay(@+1)=R(y(x)),
where
R(w)=P(w)/Q(w),
(1.2) P(w)=a,w?+ - - - +ay,
Qw)=bw'+ - - - +by,
in which «,, -+, a;; @y, -+, @3 by - -+, b, are constants, «,a,b,#0,

P(w) and Q(w) are mutually prime. In the below, p and ¢ denote the
degrees of the nominator P(w) and the denominator Q(w) in (1.2), re-
spectively. Put

(1.3) go=max (p, @).
When n=1 in (1.1), we have
1.1) Y(r+1)=R(y(x)).

If ¢,=1 in (1.1’), then the equation reduces to a linear difference equa-
tion, by some linear transformation if necessary. When ¢,>2, equa-
tion (1.1’) is studied by Shimomura [3] and by the author [4]. Results
are:

Proposition 1. Suppose ¢,=2. Any nontrivial meromorphic
solution of (1.1’) is transcendental and of infinite order (in Nevanlinna’s
sense).

Proposition 2. When ¢=0 and ¢,=p=2 in (1.1"), any meromor-
phic solution is entire.

Proposition 3. (1.1’) possesses nontrivial meromorphic solutions.

Now we consider the case n>1 in (1.1). It will be observed that
several differences appear between the cases n=1 and n>1.

2. Transcendency and order. Prop. 1 does not hold for n>1.
e.g.,

2.1 Y(@+2)—y(x+ 1= —y(@)*/ [(1+2y(x))(1 4+ y(»))]
has a rational solution y(z)=1/x. However, we have

Theorem 2.1. When p>q=0 and q,=p=2, then any meromor-
phic solution of (1.1) is transcendental.

Proof. Suppose there would exist a rational solution y(x) for
(1.1).
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When ¢=>1. Let p¢ be a number such that Q(x)=0, and x, be such
that y(z,)=p. Obviously, x,5=00. Thus there is some k, 1<k<n, such
that 2,4k is a pole for y(x). Put

ky=max {k;1<k<n, x,+k is a pole for y(x)},
Xy ="+ k.

Similarly, since p>q, there is k,, 1<k,<n, such that x,+k, is a
pole for y(x). Repeating this procedure, y¥(x) would have an infinite
number of poles, which contradicts the supposition of rationality.

When ¢=0. If y(x) has a pole, then the above arguments apply,
and we have a contradiction also. If y(x) has no poles hence a poly-
nomial, then, inserting it into (1.1) and comparing the degrees of poly-
nomials on both sides, we also obtain a contradiction since p=>2.

Q.E.D.

Let us give another counter-example to Prop. 1. The equation
2.2) Y(@+2)+y(x+1)=[y(x)*+ 11/ y(»)
has a transcendental meromorphic solution y(x)=(e***+1)/(e***—1),
which is of order 1. However, we have

Theorem 2.2. Suppose q,>n. Then any meromorphic solution
of (1.1) is transcendental and of infinite order.

Proof. We will show here the transcendency only. The fact that
the order is o has been proved by Ochiai [2].

In view of Theorem 2.1, we can suppose P <q, hence ¢,=q. Assume
there would be a rational solution y(x)=A(x)/B(x), in which deg [A(«)]
=a, deg [B(x)]=b. We can suppose b,0 in (1.2), by considering
Y(@)+ B (Q(P)+0) instead of y(x), if necessary. Put

a,A(x+n)/B(x+n)+ - - - +a,A(x+1)/B(x+1)=C(x)/D(),
where deg [D(x)]<nb, deg [C(®)]<a+(n—1)D. On the other hand
R(y(x))=B(x)**[E(x)/ F(®)],
where
E(@)=a,A(®)"+a, A@)*'B(x)+ - - +a,B(x)?,
F(2)=b,A(x)*+b,_;A(x)*'B(x)+ - - - +bB(x)"
E(x) and F(x) are obviouly mutually prime.

(i) Suppose a<<b. Then deg [F(x)]=bq=0bq,>bn=deg [D(x)],
which is a contradiction.

(ii) Suppose a>b. Then deg [E(x)]=ap+b(q—p)=(a—b)p+bg
>a+b(n—1)=deg [C(x)], which is also a contradiction.

(iii) Suppose a=b. Then lim,_ . [A(x)/B(x)]=2+0, co. 2 satis-
fies (a,+ - - - +a@)A=R(2), whence Q(1)=+0. Put y(x)=u(x)+4. Then
w(x)=A(x)/B(x) satisfies the equation

a,w(x+n)+ - - - +au(@+1) =P (u(x)/ Q(uw(x)),
where Q,(0)=Q(4)+0. Since deg [B,(x)]=deg [B(x)]>deg [A,(x)], we
have a contradiction in this case also, by the case (i).
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Thus we conclude that y(x) can not be rational. Q.E.D.

3. The case p—g=2. We have

Theorem 3.1. Any solution of (1.1) is entire if ¢=0 and p=2.

Proof. Let y(x) be a meromorphic solution of (1.1), and let s(x,)
be the order of a pole x, for y(x). s(x,) is a nonnegative integer.

Suppose s(x,) >0 for some z,, Then by (1.1) we know that

s;=max {s(x,+k); k=1, - - -, n}>0.
Obviously s(z,) <s,/p, and
8(,—1) <max (8o, 8(%,)) /D =8,/ .
Similarly s(z,—2) <max (8,, 8(2,), 8(2,—1))/p=8,/p. In general
s(y—k)<s/p,  0ZkZn.
Put
s;=max {s(x,—k); k=1, - - -, n} <8,/ D,
k,=max {k; s(x,— k) >0, 0<k<n},
X =2xy— k.
Obviously, k£,>0. As in the above, we can easily see that
s(—k)<s/p=s/p",  1=k=n.
Thus we obtain a sequence of integers {k,, k., - - -}, k£,>0, such that
r=x;_,—k, satisfies 0<<s(x,)<s,/p’,
which leads obviously to a contradiction. Thus s(x,)=0 for any =z,
which means that y(x) is entire. Q.E.D.

Remark. When Q(w) in (1.2) has only one zero point, then (1.1)

may possess an entire solution. For example,

(3.1 Y(@+2)+y(w+1)=[y(x)*+ 11/ y(x)’

has solution y(x)=exp [(—2)°]. However, it is easy to see that, if Q(w)
has at least two distinct zero points, then any meromorphic solution
of (1.1) can not be entire.

Theorem 3.2. When p—q=2 in (1.2), then any meromorphic
solution of (1.1) is of order oo. (For the case p—qg=1, see the example
2.2).)

Proof. Let y(x) be a meromorphic solution of (1.1). y(x) is tran-
scendental by Theorem 2.1. Write t=p—q=2.

(i) When y(x) is entire. By the remark above, Q(w) must be of
the form (w —b)%(q=0), where b is a const. Then

R(w)=cw'+ - +c+c_(w—0)"+---+e_(w—Db)"
(When ¢=0, we set ¢_,=0, j=1.) Let r be so large that M(r)>2|b|,
where

(3.2) M(r)=13|g§ ly(®)].
Let x, be a point such that |z,|=7 and |y(z,)|=M(r). Then
3.3) [BW@D|Z|e M) — - - - —eo|—|e_1[2/M(r))— - - - —[e_o 2/ M(r))*

=(1/2)|e,| M(r)'
if r is sufficiently large. Since max,, ., |y(x+k)|<M(r+k)<M(r+n),
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B4 | y@+nm)+ - Fay(@+ DS (@ + - -+ DM (r+n),
on |z|=7r. By (3.3) and (3.4), we have M(r+n)=AM(r)" for a const.
A, i.e., log M(r+n)=t log M(r)+0(1). Therefore,
log M(r+nk)=t*B log M(r) for a const. B>0.
If we write p=r-+nk, then
log M(p)=(t"/*y’Bllog M(r)/t']  for r,<r<7,+n
with a sufficiently large 7,, which shows that the order of y(x) is oo.
(ii) When y(x) has a pole x,. Let s(x,) be the order of the pole
Z,. Write |x,|=r. By(1.1), thereisa k, 1<k<n, such that x,=x,+k
is a pole of order s(z,)=ts(x,). In general, for any m, there are poles
Zyy + v vy X, such that |z,|<|@,| < - <|@n], |2|S<r+nf AZ7<m), of
order s(x,)>t's(x,). Let N(r, y(x)) be the counting function of y(x) (see
[1, p. 165]). Then N(r+nm, y(x))=AXt™ with a const. A. Hence
writing r+nm=p, we obtain
T(p, y(2))=N(p, Y(x)) = A" with a const. 4,,
which shows that the order of y(x) is oo. Q.E.D.
In a subsequent paper, we will show that, if p and ¢ are non-
negative integers, p>¢+1, max (p, ¢)<n, then there is an equation of
the form (1.1) which possessess a meromorphic solution of finite order.
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