1. On the Infinitesimal Generators and the Asymptotic Behavior of Nonlinear Contraction Semi-Groups

By Isao Miyadera

Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1982)

1. Introduction. Throughout this paper, let X be a Banach space, $A: D(A)(\subset X) \rightarrow X$ be a dissipative operator satisfying range condition

(R) $R(I-tA) \supset \overline{D(A)}$ (the closure of D(A)) for every t > 0, where I denotes the identity, $J_t = (I-tA)^{-1}$ for t > 0, $\hat{D}(A) = \{x \in \overline{D(A)} : \lim_{t \to 0^+} ||J_tx - x||/t < \infty\}$, and let $\{T(t) : t \ge 0\}$ be the nonlinear contraction semi-group on $\overline{D(A)}$ generated by A, i.e., $T(t)x = \lim_{\lambda \to 0^+} J_{\lambda}^{[t/\lambda]}x$ for $x \in \overline{D(A)}$ and $t \ge 0$, where [] denotes the Gaussian bracket (see [2]). We define |Ax|, d(0, R(A)), |||Ax||| and A° by $|Ax| = \lim_{t \to 0^+} ||J_tx - x||/t$ for $x \in \hat{D}(A)$, $d(0, R(A)) = \inf \{||x|| : x \in R(A)$ (the range of A)}, $|||Ax||| = \inf \{||y|| : y \in Ax\}$ for $x \in D(A)$ and $A^{\circ}x = \{y \in Ax : ||y|| = |||Ax|||\}$, respectively.

The purpose of this paper is to prove the following theorems.

Theorem 1. Suppose that X^* (the dual of X) has Fréchet differentiable norm. Then we have the following: (i) For each $x \in \hat{D}(A)$, $\lim_{t\to 0^+} t^{-1}(T(t)x-x)$ and $\lim_{t\to 0^+} t^{-1}(J_tx-x)$ both exist and are equal. Define A^* by $A^*x = \lim_{t\to 0^+} t^{-1}(T(t)x-x)$ for $x \in \hat{D}(A)$. Then A^* is the infinitesimal generator of $\{T(t): t \ge 0\}$. (ii) $(\overline{A})^\circ$ is single-valued, $D((\overline{A})^\circ)$ $= D(\overline{A}) = \hat{D}(A)$ and $(\overline{A})^\circ = A^*$, where \overline{A} denotes the closure of A.

Theorem 2. Suppose that X^* has Fréchet differentiable norm. Then we have the following: (i) There exists an $x_0 \in X$ such that $\lim_{t\to\infty} t^{-1}T(t)x = \lim_{t\to\infty} t^{-1}J_tx = x_0$ for all $x \in \overline{D(A)}$. (ii) x_0 is the unique point of least norm in $\overline{R(A)}$.

Theorem 1 generalizes Plant's results [6, Theorems 2 and 5]. Plant proved (i) in Theorem 1 under the assumption that X is uniformly convex, and (ii) under the assumption that X is uniformly convex and X^* is strictly convex. Theorem 2 generalizes Reich's result [7, Theorem 3.3]. Reich proved (i) and (ii) in Theorem 2 under the assumption that X is uniformly convex, or X^* has Fréchet differentiable norm and X is (UG).

2. Lemmas. The following was proved in [1]:

Lemma 1. $\hat{D}(A) = \{x \in \overline{D(A)} : \lim_{t \to 0^+} ||T(t)x - x||/t < \infty\}, and$ $\lim_{t \to 0^+} ||T(t)x - x||/t = |Ax| (\equiv \lim_{t \to 0^+} ||J_tx - x||/t) \text{ for every } x \in \hat{D}(A).$

The following lemma is due to Plant [6, (2.10)].

I. MIYADERA

Lemma 2. Let $x \in \overline{D(A)}$. Then for every s, t > 0

$$||T(s)x-J_tx|| \leq (1-s/t) ||J_tx-x|| + (2/t) \int_0^s ||T(r)x-x|| dr.$$

Lemma 3. Let $x \in \overline{D(A)}$. Then $\lim_{t\to\infty} ||T(t)x||/t = \lim_{t\to\infty} ||J_tx||/t = d(0, R(A))$.

Proof. It is known that $\lim_{t\to\infty} ||J_tx||/t = d(0, R(A))$ (see [7, Lemma 2.1]). Let $v \in R(A)$. Then there is a $u \in D(A)$ such that $v \in Au$. Since $u = J_{\lambda}(u - \lambda v)$ for $\lambda > 0$ and each J_{λ} is a contraction (i.e., $||J_{\lambda}y - J_{\lambda}z|| \leq ||y - z||$ for $y, z \in D(J_{\lambda})$), we have

(1) $\|J_{i}^{t}x-u\| \le \|J_{i}^{t-1}x-u\| + \lambda \|v\|$ for $\lambda > 0$ and $i \ge 1$. Let $t > \lambda > 0$ and add (1) for $i = 1, 2, \dots, [t/\lambda]$. Then $\|J_{i}^{t/\lambda}x-u\| \le \|x-u\| + t \|v\|$. Letting $\lambda \to 0+$, we have that $\|T(t)x-u\| \le \|x-u\| + t \|v\|$ for t > 0 and then $\limsup_{t \to \infty} \|T(t)x\|/t \le \|v\|$. Hence $\limsup_{t \to \infty} \|T(t)x\|/t \le d(0, R(A))$. By Lemma 2 and $\|J_{i}x-x\| - \|T(s)x-x\| \le \|T(s)x-J_{i}x\|$,

$$||T(s)x - x|| \ge (s/t) ||J_t x - x|| - (2/t) \int_0^s ||T(r)x - x|| dr$$

for t, s > 0. Letting $t \to \infty$, $||T(s)x - x|| \ge d(0, R(A))s$ for s > 0 and hence $\liminf_{s \to \infty} ||T(s)x||/s \ge d(0, R(A))$. This completes the proof.

3. Proof of Theorems. It is known that X^* has Fréchet differentiable norm if and only if X is reflexive, and strictly convex and has the following property (A). (See [3].)

(A) If $w-\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} ||x_n|| = ||x||$, then $\lim_{n\to\infty} x_n = x$. Here $w-\lim_{n\to\infty} x_n$ denotes the weak limit of $\{x_n\}$.

Let $x \in \overline{D(A)}$, and let $f(\cdot):(0,\infty) \to X^*$ be a function such that $f(t) \in F(t^{-1}(J_tx-x))$ for t>0, where $F(u) = \{u^* \in X^* : (u, u^*) = ||u||^2 = ||u^*||^2\}$ for $u \in X$ and (u, u^*) denotes the value of u^* at u. By the resolvent identity, $||J_tx-J_sx|| = ||J_s((s/t)x+(1-s/t)J_tx)-J_sx|| \le (1-s/t) ||J_tx-x||$ for t>s>0. Combining this with $\operatorname{Re}(J_sx-x, f(t)) \ge ||J_tx-x||^2/t^2$ $-||J_sx-J_tx|| ||J_tx-x||/t$, we have that $\operatorname{Re}(s^{-1}(J_sx-x), f(t)) \ge ||J_tx-x||^2/t^2$ for t>s>0, where $\operatorname{Re}(u, u^*)$ denotes the real part of (u, u^*) . By $\operatorname{Re}(T(\sigma)x-x, f(t)) \ge ||J_tx-x||^2/t - ||T(\sigma)x-J_tx|| ||J_tx-x||/t$ and Lemma 2, $\operatorname{Re}(\sigma^{-1}(T(\sigma)x-x), f(t))$

$$\geq \|J_t x - x\|^2 / t^2 - (2/t^2) \|J_t x - x\| (1/\sigma) \int_0^\sigma \|T(r) x - x\| dr$$

for $t, \sigma > 0$. Consequently we have

Proof of Theorem 1. (i) Let $x \in \hat{D}(A)$, and let $\{s_k\}$ and $\{\sigma_k\}$ be sequences of positive numbers such that $s_k \to 0$ and $\sigma_k \to 0$ as $k \to \infty$. Since X is reflexive and $\lim_{s\to 0^+} ||T(s)x-x||/s = \lim_{s\to 0^+} ||J_sx-x||/s = |Ax| < \infty$ by Lemma 1, there exist $u, v \in X$ and $\{k_i\}$, $\{k'_i\}$ (subsequences of {k}) such that $w-\lim_{i\to\infty} s_{k_i}^{-1}(J_{s_{k_i}}x-x)=u$ and $w-\lim_{i\to\infty} \sigma_{k'_i}^{-1}(T(\sigma_{k'_i})x-x)=v$. Putting $s=s_{k_i}$, $\sigma=\sigma_{k'_i}$ in (2) and letting $i\to\infty$, we have

(3) $\operatorname{Re}(u+v, f(t)) \geq 2 ||J_t x - x||^2/t^2 \quad \text{for } t > 0.$

Since X^* is reflexive and $||f(t)|| = ||J_t x - x||/t$, there exists an $f \in X^*$ and a sequence $\{t_n\}$, $t_n > 0$, with $\lim_{n \to \infty} t_n = 0$ such that $w - \lim_{n \to \infty} f(t_n) = f$. Therefore by (3)

Noting that $||u|| \leq |Ax|$, $||v|| \leq |Ax|$ and $||f|| \leq |Ax|$, it follows from (4) that ||u+v|| = ||u|| + ||v|| and ||u|| = ||v|| = |Ax|. So, by strict convexity of X, we have that u = v. Consequently, $w-\lim_{s\to 0^+} s^{-1}(J_sx-x)$ and $w-\lim_{\sigma\to 0^+} \sigma^{-1}(T(\sigma)x-x)$ both exist and $w-\lim_{s\to 0^+} s^{-1}(J_sx-x) = w-\lim_{\sigma\to 0^+} \sigma^{-1}(T(\sigma)x-x) = v$. Moreover,

 $\lim_{s\to 0^+} \|J_s x - x\|/s = \lim_{\sigma\to 0^+} \|T(\sigma)x - x\|/\sigma = |Ax| = \|v\|.$

Since X has the property (A), we obtain $\lim_{s\to 0^+} s^{-1}(J_sx-x)=v$ = $\lim_{\sigma\to 0^+} \sigma^{-1}(T(\sigma)x-x)$. It follows from Lemma 1 that A^* is the infinitesimal generator of $\{T(t):t\geq 0\}$. (The infinitesimal generator A_0 of the semi-group is defined by $A_0z = \lim_{h\to 0^+} h^{-1}(T(h)z-z)$ whenever the limit exists.) (ii) Note that \overline{A} is a closed dissipative operator and $(I-t\overline{A})^{-1}x=J_tx$ for $x\in \overline{D(A)}$ and t>0. Since $||J_tx-x||/t=||(I-t\overline{A})^{-1}x-x||/t\leq |||\overline{A}x|||$ for $x\in D(\overline{A})$ and t>0, we have that $D((\overline{A})^0)\subset D(\overline{A})$ $\subset \widehat{D}(A)$. Let $x\in \widehat{D}(A)$. Then $t^{-1}(J_tx-x)\in AJ_tx\subset \overline{A}J_tx$ for t>0,

 $\lim_{t\to 0+} J_t x = x$ and $\lim_{t\to 0+} t^{-1}(J_t x - x) = A^* x$.

The closedness of \overline{A} implies that $x \in D(\overline{A})$ and $A^*x \in \overline{A}x$. But $||A^*x|| \leq |||\overline{A}x|||$ by $||J_tx-x||/t \leq |||\overline{A}x|||$. Consequently, $x \in D((\overline{A})^\circ)$ and $A^*x \in (\overline{A})^\circ x$. Therefore $D((\overline{A})^\circ) = D(\overline{A}) = \hat{D}(A)$ and $A^* \subset (\overline{A})^\circ$. To show that $(\overline{A})^\circ = A^*$, let $x \in D((\overline{A})^\circ)$ and $z \in (\overline{A})^\circ x$. Since $t^{-1}(J_tx-x) \in \overline{A}J_tx$, the dissipativity of \overline{A} implies

 $||J_tx-x-\lambda(t^{-1}(J_tx-x)-z)|| \ge ||J_tx-x||$ for $\lambda > 0$ and t > 0. Put $\lambda = t/2$. Then we have $||t^{-1}(J_tx-x)+z|| \ge 2 ||J_tx-x||/t$ for t > 0. Letting $t \to 0+$, $||A^*x+z|| \ge 2 ||A^*x||$ and hence $||A^*x+z|| = 2 ||A^*x|| = ||A^*x|| + ||z||$. By strict convexity of X, $z = A^*x$. This completes the proof.

Remark 1. The proof of Theorem 1 (i) shows that if X is reflexive and strictly convex, then for every $x \in \hat{D}(A)$ w-lim_{$t\to0+}$ </sub> $t^{-1}(T(t)x-x)$ and w-lim_{$t\to0+}$ $t^{-1}(J_tx-x)$ both exist and are equal.</sub>

Proof of Theorem 2. Put d=d(0, R(A)) $(=d(0, \overline{R(A)}))$ and let $x \in \overline{D(A)}$. (i) Since $||f(t)|| = ||J_t x - x||/t \to d$ as $t \to \infty$ (by Lemma 3), there exists an $f \in X^*$ and a sequence $\{t_n\}$ with $\lim_{n\to\infty} t_n = \infty$ such that $w - \lim_{n\to\infty} f(t_n) = f$. By (2) we get

(5) $\operatorname{Re}(s^{-1}(J_s x - x) + \sigma^{-1}(T(\sigma)x - x), f) \geq 2d^2 \quad \text{for } s, \sigma > 0.$

Let $\{s_k\}$ and $\{\sigma_k\}$ be sequences such that $s_k \to \infty$ and $\sigma_k \to \infty$ as $k \to \infty$. Since $\lim_{s\to\infty} ||T(s)x - x||/s = \lim_{s\to\infty} ||J_sx - x||/s = d$ by Lemma 3, there exist $u, v \in X$ and $\{k_i\}, \{k'_i\}$ (subsequences of $\{k\}$) such that $w-\lim_{t\to\infty} s_{ki}^{-1}(J_{s_{ki}}x-x)=u$ and $w-\lim_{t\to\infty} \sigma_{k'}^{-1}(T(\sigma_{k'i})x-x)=v$. Then by (5) we have that $\operatorname{Re}(u+v, f) \geq 2d^2$. Using the same argument in the proof of Theorem 1, we see that $\lim_{t\to\infty} t^{-1}T(t)x$ and $\lim_{t\to\infty} t^{-1}J_ix$ both exist and are equal. Put $x_0 = \lim_{t\to\infty} t^{-1}J_ix$. Since T(t) and J_i are contractions, $\lim_{t\to\infty} t^{-1}T(t)z = \lim_{t\to\infty} t^{-1}J_iz = x_0$ for all $z \in \overline{D(A)}$. (ii) It is easy to see that x_0 is a point of least norm in $\overline{R(A)}$. We now prove the uniqueness. Let $y \in D(A)$ and $z \in Ay$. Since A is dissipative, $\|J_ix-y-\lambda(t^{-1}(J_ix-x)-z)\|\geq \|J_ix-y\|$ for $\lambda, t>0$. Put $\lambda=t/2$. Then we have $\|t^{-1}J_ix+z+t^{-1}(x-2y)\|\geq 2\|J_ix-y\|/t$ for t>0. Letting $t\to\infty$, $\|x_0+z\|\geq 2d$. Consequently, $\|x_0+w\|\geq 2d$ for every $w \in \overline{R(A)}$. In particular, let $w \in \overline{R(A)}$ and $\|w\|=d$. Then $\|x_0+w\|=\|x_0\|+\|w\|=2d$. By strict convexity of $X, w=x_0$.

Remark 2. It follows from the proof of Theorem 2 (i) that if X is reflexive and strictly convex then there exists an $x_0 \in X$ such that $w-\lim_{t\to\infty} t^{-1}T(t)x = w-\lim_{t\to\infty} t^{-1}J_tx = x_0$ for every $x \in \overline{D(A)}$.

Corollary ([4]). Let C be a closed convex subset of X, $T: C \rightarrow C$ be a contraction and $x \in C$. (i) If X* has Fréchet differentiable norm, then $\{n^{-1}T^nx\}$ is convergent to the unique point of least norm in $\overline{R(T-I)}$. (ii) If X is reflexive and strictly convex, then $\{n^{-1}T^nx\}$ is weakly convergent.

Proof. Put A = T - I. Then A is a dissipative operator satisfying (R). Let $\{T(t): t \ge 0\}$ be the contraction semi-group generated by A. It is known that $||T(n)x - T^nx|| \le \sqrt{n} ||Tx - x||$ for $n \ge 1$ (see [5]). Now, the results follow from Theorem 2 and Remark 2.

Added in Proof. 1. Recently Prof. Reich informed me that he has obtained (i) in Theorems 1 and 2, and (ii) under an additional assumption that X is smooth. (See S. Reich "A note on the asymptotic behavior of nonlinear semigroups and the range of accretive operators, MRC Technical Summary Report # 2198 (1981)".)

2. Let \tilde{A} be a maximal dissipative operator in $\overline{D(A)}$ such that $\tilde{A} \supset A$. If X is reflexive and strictly convex then $(\tilde{A})^{\circ}$ is the weak infinitesimal generator of $\{T(t): t \ge 0\}$.

References

- [1] M. Crandall: Proc. Amer. Math. Soc., 37, 434-440 (1973).
- [2] M. Crandall and T. Liggett: Amer. J. Math., 93, 265-293 (1971).
- [3] K. Fan and I. Glicksberg: Duke Math. J., 25, 553-568 (1958).
- [4] E. Kohlberg and A. Neyman: Israel J. Math., 38, 269-275 (1981).
- [5] I. Miyadera and S. Oharu: Tôhoku Math. J., 22, 24-47 (1970).
- [6] A. Plant: Israel J. Math., 38, 257-268 (1981).
- [7] S. Reich: J. Math. Anal. Appl., 79, 113-126 (1981).