No. 4]

45. On Totally Geodesic Hermitian Symmetric Submanifolds of Kähler Manifolds

By Kazufumi NAKAJIMA^{*)} and Yutaka SE-ASHI^{**)} (Communicated by Kunihiko Kodaira, m. j. a., April 12, 1982)

1. Introduction. Let M be a Kähler manifold with a Kähler metric g and a complex structure J. We denote by $Aut^{\circ}(M)$ the identity component of the group of all holomorphic isometries of M and by g(M) the Lie algebra of $Aut^{\circ}(M)$. For each $X \in g(M)$, X^* means the vector field on M generated by $\{\exp tX\}_{t \in R}$. Then the correspondence: $X \rightarrow X^*$ can be extended to a linear mapping of $g(M)^{\circ}$, the complexification of g(M), to the Lie algebra $\mathfrak{X}(M)$ of all vector fields on M by putting $(\sqrt{-1}X)^* = JX^*$ for $X \in g(M)$. We set for $p \in M$

$$\mathfrak{b}^{1}(p) = \{ X \in \mathfrak{g}(M)^{c} ; j_{p}^{1}(X^{*}) = 0 \},\$$

where $j_p^1(X^*)$ denotes the 1-jet of X^* at p. If M is a hermitian symmetric space, then dim $M = \dim \mathfrak{b}^1(p)$ for any $p \in M$. In this paper, we shall prove the following

Theorem. Let M be a Kähler manifold. For each point $p \in M$, there exists a totally geodesic hermitian symmetric submanifold M(p) through p such that

(a) $\dim M(p) = \dim \mathfrak{b}^{1}(p)$.

(b) Let f be a holomorphic isometry of M and $q=f \cdot p$. Then $f \cdot M(p)=M(q)$.

2. Let K_p be the isotropy subgroup of $Aut^{\circ}(M)$ at p and let \mathfrak{k}_p be the Lie algebra of K_p . We set

 $\mathfrak{m}(p) = \{ \text{the real part of } X ; X \in \mathfrak{b}^1(p) \}.$

Since $\mathfrak{b}^{\mathfrak{l}}(p)$ is an Ad K_p -invariant complex subspace, $\mathfrak{m}(p)$ is an Ad K_p -invariant subspace of $\mathfrak{g}(M)$ and $\mathfrak{m}(p) = \{\text{the imaginary part of } X; X \in \mathfrak{b}^{\mathfrak{l}}(p)\}.$

For each $\xi \in \mathfrak{X}(M)$, we denote by A_{ξ} the tensor field of type (1, 1) defined by

$$A_{\xi}v = -\nabla_{v}\xi, \quad \text{for } v \in T_{v}(M),$$

where ∇ denotes the riemannian connection. Note that $A_{\xi} = \mathcal{L}_{\xi} - \nabla_{\xi}$.

Lemma 1. For every $X \in \mathfrak{m}(p)$, $(A_{X^*})_p = 0$.

Proof. There exists $Y \in \mathfrak{m}(p)$ such that $X + \sqrt{-1} Y \in \mathfrak{b}^1(p)$. Then for any $v \in T_p(M)$, $(A_{X^*+JY^*})_p v = -\nabla_v (X^*+JY^*) = 0$. Since X^* and Y^* are infinitesimal isometries, both $(A_{X^*})_p$ and $(A_{Y^*})_p$ are skew-symmetric with respect to g. Let $\xi \in \mathfrak{X}(M)$. Then $J \circ (A_{Y^*})_p \xi_p = J[Y^*, \xi]_p - J(\nabla_{Y^*}\xi)_p$

^{*)} Department of Mathematics, Kyoto University.

^{**)} Department of Mathematics, Hokkaido University.

 $=(A_{Y^*})_p \circ J\xi_p \text{ because } \mathcal{L}_{Y^*}J=0 \text{ and } \mathcal{V}J=0. \text{ Then for any } u, v \in T_p(M),$ $g((A_{JY^*})_p u, v) = g(-\mathcal{V}_u(JY^*), v) = g(J \circ (A_{Y^*})_p u, v) = -g((A_{Y^*})_p u, Jv)$ $=g(u, (A_{Y^*})_p \circ Jv) = g(u, J \circ (A_{Y^*})_p v) = g(u, (A_{JY^*})_p v). \text{ Therefore } (A_{JY^*})_p \text{ is symmetric with respect to } g \text{ and hence } (A_{X^*})_p = (A_{JY^*})_p = 0. \text{ Q.E.D.}$

Lemma 2. (a) $\mathfrak{m}(p) \cap \mathfrak{k}_p = 0$ and $[\mathfrak{m}(p), \mathfrak{m}(p)] \subset \mathfrak{k}_p$.

(b) There exists a unique complex structure I of $\mathfrak{m}(p)$ satisfying $(IX)_p^* = JX_p^*$ and the correspondence: $X \to X + \sqrt{-1}IX$ gives an isomorphism between $\mathfrak{m}(p)$ and $\mathfrak{b}^{\mathfrak{l}}(p)$.

Proof. Let $X \in \mathfrak{m}(p) \cap \mathfrak{k}_p$. Then $(A_{X^*})_p$ is the linear isotropy representation of X at p. From Lemma 1, we know $(A_{X^*})_p = 0$ and hence X = 0. Next we take X, $Y \in \mathfrak{m}(p)$. Then $[X, Y]_p^* = -[X^*, Y^*]_p = (V_{Y^*}X^*)_p = -(V_{X^*}Y^*)_p = -(A_{X^*})_p Y_p^* + (A_{Y^*})_p X_p^* = 0$, proving (a).

We know form (a) that for each $X \in \mathfrak{m}(p)$ there exists a unique element Y of $\mathfrak{m}(p)$ such that $X + \sqrt{-1} Y \in \mathfrak{b}^{1}(p)$. If we define an endomorphism I of $\mathfrak{m}(p)$ by IX = Y, then $(X + \sqrt{-1}IX)_{p}^{*} = X_{p}^{*} + J(IX)_{p}^{*} = 0$. Therefore we get (b). Q.E.D.

Lemma 3. For each $X \in \mathfrak{m}(p)$, we set $\gamma(t) = \exp tX \cdot p$. Then $\gamma(t)$ is a geodesic.

Proof. Since X is an infinitesimal isometry, $V_{X^*}(A_{X^*}) = R(X^*, X^*) = 0$, where R denotes the curvature tensor (cf. P. 235, [3]). Therefore the tensor field A_{X^*} is parallel along $\gamma(t)$. We have $(A_{X^*})_{\tau(t)} = 0$ because $(A_{X^*})_p = 0$. Hence $V_{\dot{\tau}(t)}\dot{\gamma}(t) = -(A_{X^*})_{\tau(t)}X^* = 0$. Q.E.D.

3. We can now prove Theorem. By (a) of Lemma 2, $l = l_p + m(p)$ is a subalgebra of g(M). Let L denote the connected subgroup of $Aut^{0}(M)$ corresponding to l. We put

$$M(p) = L \cdot p = L/L \cap K_p.$$

Note that $L \cap K_p$ is compact because the Lie algebra of $L \cap K_p$ is equal to \mathfrak{k}_p . By (b) of Lemmas 2 and 3, M(p) becomes a totally geodesic complex submanifold of M. Let N be the closed subgroup of L defined by $N = \{a \in L; a \cdot q = q \text{ for any } q \in M(p)\}$. N is a normal subgroup of L contained in $L \cap K_p$ and the Lie algebra n of N is an ideal of \mathfrak{l} satisfying $\mathfrak{n} = \{X \in \mathfrak{k}_p; [X, \mathfrak{m}(p)] = 0\}$. We put L' = L/N, $K' = L \cap K_p/N$ and $\mathfrak{l}' = \mathfrak{l}/\mathfrak{n} = \mathfrak{k}_p/\mathfrak{n} + \mathfrak{m}(p)$. Then M(p) = L'/K'. The automorphism σ of \mathfrak{l} defined by $\sigma|_{\mathfrak{k}_p} = 1$ and $\sigma|_{\mathfrak{m}(p)} = -1$ induces an involutive automorphism σ' of \mathfrak{l}' and the pair (\mathfrak{l}', σ') is an effective orthogonal symmetric Lie algebra (cf. P. 229, [1]).

Let \tilde{L} be the universal covering group of L' with the covering map $\omega: \tilde{L} \to L'$ and let $\tilde{K} = \omega^{-1}(K')$. We denote by \tilde{K}^0 the identity component of \tilde{K} . Then \tilde{L}/\tilde{K}^0 is a simply connected hermitian symmetric space and we can obtain the decompositions $\tilde{L} = L_0 \times L_- \times L_+$ and \tilde{K}^0 $= K_0 \times K_- \times K_+$ in such a way that L_0/K_0 , L_-/K_- and L_+/K_+ are hermitian symmetric spaces of the Euclidian type, compact type and non-

compact type respectively. Let π_{-} and π_{+} be the projections: $\tilde{L} \rightarrow L_{-}$ and $\tilde{L} \rightarrow L_{+}$ respectively. It is easy to see that the Lie algebras of $\pi_{-}(\tilde{K})$ and $\pi_{+}(\tilde{K})$ are those of K_{-} and K_{+} . Since $(L_{+}, \pi_{+}(\tilde{K}))$ is a pair associated with an orthogonal symmetric Lie algebra of non-compact type, $\pi_{+}(\tilde{K})$ is connected and hence $\pi_{+}(\tilde{K}) = K_{+}$ (cf. P. 253, [1]). Note that $\pi_{-}(\tilde{K})$ is a compact subgroup of L_{-} (cf. P. 282, [1]). Then the homogeneous space $L_{-}/\pi_{-}(\tilde{K})$ has a Kähler metric such that the covering map: $L_{-}/K_{-} \rightarrow L_{-}/\pi_{-}(\tilde{K})$ is isometric. Since L_{-}/K_{-} is a hermitian symmetric space of compact type, the Ricci tensor of $L_{-}/\pi_{-}(\tilde{K})$ is positive definite and hence $L_{-}/\pi_{-}(\tilde{K})$ is simply connected (Kobayashi [2]). As a result, $\pi_{-}(\tilde{K})$ is conneced and hence $\pi_{-}(\tilde{K}) = K_{-}$. We thereby obtain $\tilde{K} = \tilde{K} \cap L_0 \times K_- \times K_+$ and $M(p) = L_0/\tilde{K} \cap L_0 \times L_-/K_- \times L_+/K_+$. It remains to show that $L_0/\tilde{K}\cap L_0$ is symmetric. We write $L_0/\tilde{K}\cap L_0$ $=\Gamma \setminus C^n$, where Γ is a discrete subgroup of holomorphic isometries of $C^n(=L_0/K_0)$. Since L_0 contains all translations of C^n , each element of Γ commutes with all translations. As a consequence Γ consists of translations and hence $L_0/\tilde{K} \cap L_0$ is symmetric. By construction. dim $M(p) = \dim \mathfrak{b}^1(p)$. Let f be a holomorphic isometry of M and q = $f \cdot p$. Clearly Ad $fK_p = K_q$ and Ad $f \mathfrak{b}^1(p) = \mathfrak{b}^1(q)$. Therefore Ad $f \mathfrak{m}(p)$ $= \mathfrak{m}(q)$ and hence $M(q) = f \cdot M(p)$, completing the proof.

Remark. We can show that M(p) is locally symmetric more directly from the following fact: Let ξ be an infinitesimal affine transformation of a manifold M with an affine connection V. If $(A_{\xi})_p = 0$. Then $\nabla_{\xi_p} R = (\pounds_{\xi} R)_p - (A_{\xi} R)_p = 0$, where R denotes the curvature tensor. Similarly we get $\nabla_{\xi_p} T = 0$ for the torsion tensor T.

As an immediate corollary of the proof of Theorem, we have

Theorem 4. Let M be a connected Kähler manifold. Assume that there exists a point $p \in M$ such that dim $\mathfrak{b}^{i}(p) = \dim M$. Then M is a hermitian symmetric space.

Proof. Let M(p) be the submanifold of M constructed in the proof of Theorem. Then M(p) is open. Hence there exists $\varepsilon > 0$ such that the ε -neighborhood U of p contained in M(p). Let $q \in \overline{M(p)}$. There exists $p' \in M(p)$ such that $d(p', q) < \varepsilon$, where d denotes the distance function. Since $M(p) = L \cdot p$, there exists $f \in L$ such that $f \cdot p = p'$. Clearly $f^{-1} \cdot q \in U$. Therefore there exists $f' \in L$ such that $f^{-1} \cdot q = f' \cdot p$. Then $q = f \cdot f' \cdot p$ and hence $\overline{M(p)} = M(p)$. Q.E.D.

Remark. In the case where M is a Siegel domain of the second kind, our hermitian symmetric submanifold M(p) is holomorphically isomorphic to the symmetric Siegel domain S constructed in [4].

References

- [1] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, San Francisco, London (1978).
- [2] S. Kobayashi: On compact Kähler manifolds with positive Ricci tensor. Ann. of Math., 74, 570-574 (1961).
- [3] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry I. Wiley (interscience), New York (1963).
- [4] K. Nakajima: Symmetric spaces associated with Siegel domains. J. Math. Kyoto Univ., 15, 303-349 (1975).