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1. The Algebraic Derivative and Laplace’s
Differential Equation

By Kosaku Yo0SIDA, M. J. A.
(Communicated Jan. 12, 1983)

0. The purpose of the present note is to show that the differen-
tial equation with linear coefficients (so-called Laplace’s differential
equation)

(1) aty”’ () + (@t 4+ b)Yy )+ (at+ b)y () =0
is convertible into
(2) Dy =Q(3)= (—2a,+b)s—a,+b, .

y  p(s) 0,8+ 0,8+,

Here D is “the operator of algebraic derivative” and s is “the operator
of differentiation” in the operational calculus of J. Mikusifski
(Pergamon Press (1959)), and fractions Dy/y and q(s)/p(s) are “con-
volution quotients”.
We shall show that, if the algebraic equation

(3) P(R)=a,2"+az+a,
has two distinet roots z, and z, so that

q(?) — I + It

p(R) 22—z 2—2,
then the convolution quotient
(4) y=C(s—zID)(s—=z,I)* (C is a non-zero constant)
satisfies equation (2). In this way, we can solve Bessel differential
equation, Laguerre differential equation and the like algebraically, by
simply making use of the general binomial expansion

(y; and y, are complex numbers),

o

A—ar)' =2, ( Z)(_“)W (convergent for |az|<1),

k=0
without appeal to other analytical tools like the Laplace transform
nor to the Fuchs theory of differential equations.
1. The definition of D and of (s—gI)*. Let C=C[0, o) be the
totality of complex-valued continuous functions f={f(®)}, g={9@®},
Cis a commutative ring by the sum f+9={f()+9@®)} and the

(convolution) product fg={r f(t—u)g(u)du}. By virtue of Titch-
0

marsh’s convolution theorem, we have fg=0 ((f¢9)(t)=0) if and only if
either f=0or g=0. Hence the totality C/C of fractions (convolution
quotients) /g (f, g € C and g=+0), f,/9,- - - constitutes a commutative
ring by
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1+L=fgl+flg S ST
9 9 99, 9 9 99
C is a subring of C/C by identifying f e C with fg/g e C/C.
We denote ={1} (the operator of integration), I=h/h=g/g (the
operator of the product unit) and s=1/h=g/hg (the operator of differ-

entiation). We have

(5) =Tt (=12, .-; k°=I),
(6) {If {fo@®} el then f™=s"f—s"'[f(0)]—---—[f"""(0)],
where [a]=s{a} for complex number «.

Definition of D. D is a mapping of C/C into C/C such that
Df={—tf@®)} forfeC,
(7) {D—‘f;= DSfg—f(Dg) for ‘—f—GC/C
9 9’ 9
and it is not difficult to prove that

D(_JL+A>= pfipts, D([oz]%) =[a]<D§>,

® N (AN (s
D(L2)=(00) g+ 520

Moreover, it is not difficult to show that
If a=% eC/C and b=§ € C/C, then

8)Y
(8) Do _ (Da)b —a(Db) _p.ma
b b? np
We have thus

(9) {Dh":—nh"“ and Ds"=ns""! (n=1,2, .-.; 8°=I), in
particular Dih°=DI=0, Ds°=DI=0 and Ds=1.
Proof. Dh*={—tI'(m) 't"'}=—Tm)"'I'(n+1Dh"*".
The hitherto formulas are proved by J. Mikusifski in his book
mentioned above. We now define and prove the following.
For any complex number 7,

Div = —phr*!, where hr=""" _{LGm "¢ "7
a0

hr {F(,n)—ltn—l}
n being any integer>1 such that Re(y+n)>1.
Proof. Easy from (5), (8) and (9).
We have thus, by (8)’ and (10),
, ~nl _—Dw
(10) DsT_DW =
The next formula is very important:
D(I—ah) =y(I—ah) ~'ah’, where
11 -
( ) (I—-oth)’=Z (%)(_“)khk'
k=0

Proof. ki"jo( {c)(—a)khk=1+{i (%)(—a)"]’(k)“t""} eC/C and

k=1

___Thr-i-l—?r:rsr—l.
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the infinite series Z ( )( ) I'(k)-'t*-* i, thanks to the convergent

factors I'(k)-?, convergent at every ¢ and it can be differentiated with
respect to ¢ by term-wise differentiation.
Now we have, by the above,

DA—ahy=DI+{—t 3 (] J-a'T o1t}
kZ:: ( )( a)*lakht+!
=1 33 ([ 1)~ @ ht-tale = U —aly-tae.

As a corollary of (11), we have

(12)  D(s—aly=p(s—aly-', where (s—az)r=il;};ih)_’.
Proof. D d=ahy _ (DA—aly)ly —(I—ahy(Dh)
hr her
U —ahy kel (I — b))
_ th
S

2. Proof of (4) and examples. Assuming that y(¢)=£0 is twice
continuously differentiable, we can rewrite (1) by (6) and (7) as follows :
—a,D(s*y —s[y(0)]— [y’ (0D + (—a, D+ b)) (sy —[y(0)])

+ (“‘a’oD'l‘ bo)?/:O-
Hence, by Ds=1, we obtain (2) assuming the initial condition of y(t):
(13) Y(0)=0 if a,+Db,.
This proves (4) by (12).
Example 1 (Bessel differential equation). For the equation

1y ty"(t) — Ra— 1Dy’ (1) + ty () =0,
we have a,—b, =2« and
2y Dy —a-1j2, —a=1/2
Y s+l s—il
Hence
4y Yy=C(s+il) " (s—i)~*"*=C(s*+ ) "1
___C(h2(1+h2)-—l)a+l/2= (Z ( o— 1/2>h2k)h2a+l.
k=0

satisfies (2)'. If Rea>=0, we cbtain
<—a—1/2) _ (=D @a+2k+1DI'(a+1)
k 2N (k+1DI Qe+ 1DI(a+k+1)"
Thus if Rea>1, then
C F(a+1)22a o ( l)k ( t )2k+2a
I'Ca+1) =0 I'k4+1DI'(e+k+1)
is twice continuously differentiable in ¢ for ¢>0 including ¢=0. Thus

Y=
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the solution
e (=1 t \2k+2a

(14) V= e D kD) <E)
of (2) satisfying (13) is a solution of (1)’ for {=0. This means that,
when t=0 and Re a>1, the coefficient of ¢***?+-! in the infinite series
given by
(15) ty (1) — Ca—Dy.(t) + ty.(t)
must vanish as an analytic function of o (£k=0,1,2, --.).

Therefore, since y.(t) with Rea>=0 is also twice continuously

differentiable in >0, we see, as in the case of Rea>1, that the
formula

tyy (1) — Ca—Dy() +ty.(b)
must vanish, because the coefficients of t****+-! all vanish.

Thus we have proved that, when Rea>0 or =0, ¥,(t) given in
(14) is a solution of (1)’ at every ¢t >0 satisfying (13). Hence we have
obtained Bessel function of the first kind and of order « (Rea>0 or
a=0):

(16) JO=tyH=3 (—LF (&)™
= '(k+1DI(a+k+1)\2
which satisfies the original Bessel equation

an @)+t () + (EF—aDJ (1) =0 for ¢>0.

Example 2 (Laguerre differential equation). For the equation
@~ ty" () —(E+a—1)y' )+ (a4 Dy(t) =0
we have a,—b,=«a and
@) Dy =(—2+1—2¢)s+1+a+2___ —l—a—l_l_ A .

Y s’—s s s—1

Hence, for Rea>0 or for =0,
(4)// y,,J:Cs“'“'*(s—I)‘-—-Ch““(l—h)‘

=C kio( i)(—l)"l’(k+oz+1)“t"+“

is a solution of (2)” and ¢-*y, ; reduces to a polynomial in ¢ if and only
if 2=n(=0,1,2, -..). So we have, by taking C as (n!)"*I'(n+a-+1),
oy = DOECED () (0"
o n! w=o\k/ ['k+as+1)

(o (=" __T(a

=% <n—k) k! =L
We have thus obtained the n-th Laguerre polynomial of order o« : L{¥(2).
When Rea>0 or =0, t*L{"(¢) is surely a solution of (1) with 2=n
for t>0 and satisfies (13).

Remark. The equation of the form

Dy _ ¢

Y (s—a)
is satisfied by y=Cee-* which belongs to C/C. We omit the proof.




