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Oo Introduction. Let X be a no.n-singular algebraic variety with
dim X--N over an algebraically closed field. In this paper we. shall prove
the following formula

N/] CN-(t).K_.rRZ(tKx)--r=o (N--2r)
Here the (t) denote, the Bernoulli polynomials, defined by

e--I n!
Rn--Rn(c, ..., Cn) is a polynomial of Chern classes, defined by

T’n+ (c, ..., Cn)=(1/2)cR(c, ..., c.)
where T is the r-th todd class of X.

1. Preliminaries. We start by recalling the ollowing elementary
facts.

Lemma 1.
(1-1)
(1-2)
(1-3)
(1-4)

Proof.

(1-6)

0(t)=l, (t)=t-(1/2).
(d/ dt)(t) n. Cn- l(t)

2n+ 1(0) 2n+ 1(1/2) 0 for nl.
Cn(t+l)--(t)=nt-.

Cn(t) E 7 (O)t_ _mV_.n(t)=E (0)t-r=o r =o 2r

o 2r 2m-2r+1
We only prove (1-6). From (1-5) we have

2m+1 =o 2r 2m--2r+l 2

0=@/2m 2r(0) 1 1
\ ]2r 2m--2r+1 2- + 2 +

From this (1-6) follows. Q.E.D.
We define the symbols c, ..., c p, ..., p;z, ..., z; x, ..., x; and

polynomials A(p, ..., p), T(c, ..., c) (ONi<N) and R(c, ..., c.) (0<=]
__< [N/2]) as follows"
( 1 ) z=x for 1Ni<N.
(2) p is the i-th elementary symmetric function of x, ..., x.
(3) c is the i-th elementary symmetric function o.f z, ..., z.

Put t=1/2. Then
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( 4 ) E A,(p,..., pJ. T’ (mod T/).
sinh2xT --o

NzT = T(c, ..., cJ. T (mod T+).(5)

( 6 ) T+(c, ..., c)=(1/2)cR(c, ..., c).
From these

A= (2/3)p, A- (2 / 45)(-- 4p+7p),
A=(--4/945)(16p--44pp+31p), ...;
T (1/2)c, T= (1 / 12)(c+ c), T (1/24)CCl.
Ro=l, R=(1/12)c, R=(1/720)(--cc+cc-c+3c),
R= (1 /60480)(2cc+2cc-2cc- lOcc llccc- c]--9cc-2cc

+ 10c+ 2c),
R (1/3628800)(-3cc+3cc+21 -cc 3cc 29ccc+3cc

42cc+8cc+26ccc-3cc+50ccc- 16ccc
13ccc+3cc+21c 34cc-8cc+13cc+3cc+5c- 3cs).

Remark. If we regard c as the i-th chern class of X, then T repre-
sents the r-th Todd class of X.

Lemma 2.
/:

2(r--2s)1 .(c’)1h-s( 7 T(c,, ..., c)= A(p,, ..., p).
Especially T+ is a polynomial in c, ..., c which can be devided by c.

Proof. See Todd [2].
Hence., rom the definition of R,

( 8 ) R(c, ..., c)=0 2(2r-- 2s + 1)
c A(p, ..., ).

2. Proof of the formula.
/ ._.(0)Lemma 3. T: K-Rr.
=o (M--2r)

Proof. If M is odd, then _r(0)=0 or r[M/2]. Thus
1/ _(0) c_R:I(O)KxRn:cR/:TM

We assume that M is even, say M=2n. Then we shall show

Tn= en-er(O) cn-rRr.
=o (2n 2r)

Actually, by (8), the right hand side is written as
_.(o) c_R

=o (2n-- 2r)

=2n_2r(O)(1 kn-2r(r 22n-2r (1 2r-2s }
1 1 -

2(0) _21__ 1 cl]x-A=0 =0 (2q)
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Putting re=n-s, (1-6) yields

s 2eqqq(0)
q=o (2q) (2n-- 2s-- 2q+ 1)

Hence the above sum is T by (7).
Let

(2n-- 2s)

/ -,(0 -’R,.( ) P(t) --Kx
r--0 (N--2r)

Q.E.D.

If we substitute D/Kx for t in (,), then (,) can le regarded as a polynomial
in D, Kx and c, ..., c.

Theorem 4. Let X be a non-singular complete variety of dimension
N, D a line bundle on X, c,..., c chern classes of X, and let Kx be a
canonical line bundle of X. Then

()(D)) P(D/K).
Proof. By the Hirzebruch Riemann-Roch formula

N

Z((z(D))--o l-DT_.
On the other hand, the term of D of P(D/Kx) is equal to a multiple of
(D/Kx) and of the coefficient of t in P(t). Noting that

eN-2r(t) N-2r eN-2r s(O) t
(N-- 2r) =0 r (N-- 2r-- s)

the term of D of P(D/Kx) is

(,,) eN-2r-3(0) .K_2r_RrD.
r=0 r (N-- 2r-- s)

By Lemma 3, (**) is equal to
N ID.T_..
=0

This eompletes the proof.
Putting D=tKx we obtain the following formula stated in the Intro-

duction

z(tKx): , eN-2r(t) .K-2rRr.
=0 (N--2r)

References

1 F. Hirzebruch and K. H. Mayer: Topological methods in algebraic geometry.
Grundlehren 131, 3rd ed., Springer-Verlag, Heidelberg, ix+232pp. (1966).

[2 J.A. Todd: The arithmetical invariants of algebraic loci. Proc. London Math.
Soc., 43, 190-225 (1937).


