13. On the Relative CR Structure

By Kôsaku Hotta

Research Institute for Mathematical Sciences, Kyoto University

(Communicated by Kunihiko KODAIRA, M. J. A., Feb. 12, 1987)

Let \overline{M} be an *m*-dimensional compact complex manifold with smooth boundary M_0 , and let \overline{N} be an *n*-dimensional closed submanifold of \overline{M} with boundary N_0 . The purpose of this note is to report the possibility of extending deformations of the relative CR structure on the pair (M_0, N_0) to deformations of the relative complex structure on the pair $(\overline{M}, \overline{N})$ in the sense of [3]. The details will appear elsewhere.

§1. Preliminaries.

(1.1) Suppose that \overline{M} is the closure of a relatively compact open subset M of a \mathcal{C}^{∞} manifold M' in which M has a smooth boundary M_0 . Let N' be a \mathcal{C}^{∞} submanifold of M' such that $\overline{N} = \overline{M} \cap N'$ and $N_0 = M_0 \cap N'$. Let $\overline{Z}_{\overline{N}/\overline{M}}$ be the sheaf of germs of holomorphic vector fields on \overline{M} which are tangential to \overline{N} at each point of \overline{N} . Let $T'\overline{M}$ (resp. $T''\overline{M}$) be the holomorphic (resp. the antiholomorphic) tangent bundle of \overline{M} . Denote the complexification of the tangent bundle TM_0 of M_0 by CTM_0 . Set ${}^{\circ}T' = (T'\overline{M}|_{M_0}) \cap CTM_0$ and ${}^{\circ}T'' = {}^{\circ}\overline{T}'$. Then the complex fiber dimension of ${}^{\circ}T'$ is m-1, and we have the direct sum decomposition $CTM_0 = {}^{\circ}T' \oplus {}^{\circ}T'' \oplus F$, where F is the complexification of a real one-dimensional subbundle of CTM_0 .

(1.2) Let \overline{M} (resp. \overline{N}) be the underlying \mathcal{C}^{∞} manifold of \overline{M} (resp. \overline{N}). Because of the technical reason, we fix a real analytic totally geodesic Riemannian metric on \overline{M} such that \overline{N} is a totally geodesic submanifold of \overline{M} [3]. Let U be a coordinate neighborhood in \overline{M} -with coordinates z=

 (z^1, \dots, z^m) . If $U \cap \overline{N} \neq \phi$, then $(z^{(n)}, 0) := (z^1, \dots, z^n, 0, \dots, 0)$ gives local coordinates on \overline{N} . By using the above metric, we denote a \mathcal{C}^{∞} map $h: M' \to \mathbb{R}$ such that |h(z)| is geodesic distance from z to M_0 . Then $M = \{z \in M' \mid h(z) < 0\}$, $M_0 = \{z \in M' \mid h(z) = 0\}$ and $dh \neq 0$ on M_0 . As a purely imaginary generator of F, we may choose an element P = P' - P'' such that $P' = \sum_{k=1}^m p^k \partial/\partial z^k \in \Gamma(M_0, \mathcal{E}_{\overline{N}/\overline{M}}|_{M_0}), P'' = \overline{P}'$ and dh(P') = dh(P'') = 1. Note that $(P' - P'')|_{N_0} \in \Gamma(N_0, (F|_{N_0}) \cap CTN_0)$.

(1.3) We set $h_j = \partial h/\partial z^j$ and $h_j = \partial h/\partial \bar{z}^j$. On $U_0 = U \cap M_0$ we denote $Z_j = \partial/\partial z^j - h_j P', Z_{\bar{j}} = \bar{Z}_j$ for $1 \leq j \leq m$. Then Z_1, \dots, Z_m (resp. $Z_{\bar{1}}, \dots, Z_m$) generate ${}^{\circ}T'$ (resp. ${}^{\circ}T''$) over U_0 . Let $i: M_0 \longrightarrow M'$ be the injection. Put $\bar{Z}^k = i^* d\bar{z}^k - \bar{p}^k i^* \bar{\partial}h$ for $1 \leq k \leq m$. Then $\bar{Z}^1, \dots, \bar{Z}^m$ generate ${}^{\circ}T''^*$ over U_0 . Let $\phi \in \Gamma(M_0, \bigwedge^{q \circ T''^*} \otimes (T'\bar{M}|_{M_0})$). Then ϕ is written in the form $\phi = \sum_{\alpha J, \beta = 1}^m \phi_{\alpha 1}^{\beta} \dots \sigma_{\alpha q} \bar{Z}^{\alpha_1} \wedge \dots \wedge \bar{Z}^{\alpha_q} (\partial/\partial z^{\beta}).$

We call it $T'\overline{M}|_{M_0}$ -valued differential form of type $(0, q)_b$. We also define the tangential Cauchy-Riemann operator $\bar{\partial}_b$ by $\bar{\partial}_b = \sum_{k=1}^m (\partial/\partial \bar{z}^k) \bar{Z}^k$.

§ 2. A fine resolution of $\mathbb{Z}_{N/M}|_{M_0}$.

(2.1) Let $(\mathcal{B}^{0,q}, \bar{\partial})_{q=0}^m$ be a fine resolution of $\mathcal{Z}_{N/\overline{M}}$ over \overline{M} [3]. We consider a fine resolution of $\mathcal{Z}_{N/\overline{M}}|_{M_0}$ over M_0 in below. Suppose that $\mathcal{O}_{\overline{M}}$ is the sheaf of germs of holomorphic vector fields on \overline{M} , and that Ψ is the sheaf over \overline{N} of germs of holomorphic sections of the normal bundle of \overline{N} in \overline{M} . Then we have the following exact sequence over $M_0: 0 \to \mathcal{Z}_{N/\overline{M}}|_{M_0} \to \mathcal{O}_{\overline{M}}|_{M_0} \to \Psi|_{M_0} \to 0$. Let $\mathcal{A}^{0,q}(T'\overline{M}|_{M_0})$ (resp. $\mathcal{A}^{0,q}(\Psi|_{M_0})$) be the sheaf of germs of $T'\overline{M}|_{M_0} \to \mathcal{O}_{M}|_{M_0}$) valued (resp. $\Psi|_{M_0}$ -valued) differential form of type $(0, q)_b$ on M_0 (resp. N_0). Then $(\mathcal{A}^{0,q}(T'\overline{M}|_{M_0}), \bar{\partial}_b)_{q=0}^m$ (resp. $(\mathcal{A}^{0,q}(\Psi|_{M_0}), \bar{\partial}_b)_{q=0}^m)$ is a fine resolution of $\mathcal{O}_{\overline{M}}|_{M_0}$ (resp. $\Psi|_{M_0}$). Put $\mathcal{B}^{0,q}_0 = \operatorname{Ker} \{\mathcal{A}^{0,q}(T'\overline{M}|_{M_0}) \to \mathcal{A}^{0,q}(\Psi|_{M_0})\}$. Then it is easily verified that $(\mathcal{B}^{0,q}_0, \bar{\partial}_b)_{q=0}^m$ becomes a desired fine resolution of $\mathcal{Z}_{N/\overline{M}}|_{M_0}$ over M_0 .

(2.2) We give the following definitions of subsheaves of $\mathcal{B}^{0,q}$ and $\mathcal{B}^{0,q}_{o}$ used in next section.

Definition 2.1. Let $C_{\overline{M}}^{\infty}$ be the sheaf of germs of C^{∞} functions on \overline{M} . Denote $(\mathcal{J}_{\overline{N}})$ by an ideal generated by the ideal sheaf $\mathcal{J}_{\overline{N}}$ of \overline{N} in $C_{\overline{M}}^{\infty}$. Then $\widetilde{\mathcal{B}}^{0,q}$ is defined as follows:

$$\begin{split} \mathscr{\widehat{B}^{0,q}} = \{ \phi = \sum_{\substack{\alpha_j,\beta=1 \\ \alpha_j,\beta=1 \\ \beta \alpha_1,\dots,\alpha_q}}^m \phi^{\beta}_{\alpha_1,\dots,\alpha_q}(z) d\bar{z}^{\alpha_1} \wedge \dots \wedge d\bar{z}^{\alpha_q}(\partial/\partial z^{\beta}) \in \mathscr{B}^{0,q} \, | \, \phi^{\beta}_{\alpha_1,\dots,\alpha_q}(z) \in (\mathscr{G}_{\overline{N}}) \\ \text{for } 1 \leq \forall \alpha_j \leq m \text{ and } n+1 \leq \beta \leq m \}. \end{split}$$

Definition 2.2. Let $\mathcal{C}_{M_0}^{\infty}$ be the sheaf of germs of \mathcal{C}^{∞} functions on M_0 . Set $\mathcal{O}_{M_0} = \{f \in \mathcal{C}_{M_0}^{\infty} | \bar{\partial}_b f = 0\}$ and $\mathcal{J}_{N_0} = \{f \in \mathcal{O}_{M_0} | f|_{N_0} = 0\}$. Denote (\mathcal{J}_{N_0}) by an ideal generated by the sheaf \mathcal{J}_{N_0} in $\mathcal{C}_{M_0}^{\infty}$. Then $\widetilde{\mathcal{P}}_{0,q}^{\circ,q}$ is defined as follows:

§3. A relative CR structure.

(3.1) Let us recall the definition of a relative complex structure on $(\overline{M}, \overline{N})$. First a relative almost complex structure is defined by the pair (T'', \mathcal{T}'') , where T'' is a subbundle of $CT\overline{M}$ of fiber dimension m and \mathcal{T}'' is a subsheaf of the sheaf over \overline{M} of germs of \mathcal{C}^{∞} sections of T''. Further the above pair can be parametrized by $\omega \in \Gamma(\overline{M}, \widehat{\mathcal{B}^{0,1}})$. We denote this by $(T''_{\omega}, \mathcal{T}''_{\omega})$. Suppose that $\omega \in \Gamma(\overline{M}, \widehat{\mathcal{B}^{0,1}})$ is sufficiently near to zero in \mathcal{C}° topology. Then $(T''_{\omega}, \mathcal{T}''_{\omega})$ is a relative complex structure if and only if $\Omega(\omega) \equiv \overline{\partial}\omega - (1/2)[\omega, \omega] = 0$ (for more details, we refer to [3]).

(3.2) We now give the following

Definition 3.1. By a relative almost CR structure on (M_0, N_0) we mean the triple (°E", G, ° \mathcal{T} ") which satisfies the following conditions:

(1) ${}^{\circ}E''$ (resp. G) is a subbundle of CTM_0 of fiber dimension m-1 (resp. 1),

(2) ° \mathcal{T}'' is a subsheaf of the sheaf over M_{\circ} of germs of \mathcal{C}^{∞} sections of ${}^{\circ}E''$,

(3) $CTM_0 = {}^{\circ}E'' \oplus {}^{\circ}E' \oplus G$, ${}^{\circ}E' = {}^{\circ}\overline{E}''$ and $\mathfrak{I}(M_0, N_0) = {}^{\circ}\mathfrak{I}'' \oplus {}^{\circ}\mathfrak{I}'$, ${}^{\circ}\mathfrak{I}' = {}^{\circ}\overline{\mathfrak{I}}''$ where $\mathfrak{I}(M_0, N_0) = \widetilde{\mathcal{B}_0^{0,0}} \oplus \widetilde{\mathcal{B}_0^{0,0}}$.

Further if the Lie bracket [L, L'] of any two sections L, L' of ${}^{\circ}E''$ (resp.

 ${}^{\circ}\mathcal{I}''$) over an open set of M_{\circ} is also a section of ${}^{\circ}E''$ (resp. ${}^{\circ}\mathcal{I}''$), we say (${}^{\circ}E'', G, {}^{\circ}\mathcal{I}''$) a relative CR structure.

Let ρ be the canonical isomorphism from $T'\overline{M}|_{M_0}$ to ${}^{\circ}T'\oplus F$ defined by $\rho(\partial/\partial z^j) \equiv \partial^{\rho}/\partial z^j = Z_j + h_j P$ for $1 \leq j \leq m$. Now we suppose that $\varphi : {}^{\circ}T'' \to T'\overline{M}|_{M_0}$ is a bundle map such that $\rho \circ \varphi(\widehat{\mathcal{B}_o^{0,0}}) \subseteq \widehat{\mathcal{B}_o^{0,0}}$. Then any relative almost CR structure sufficiently close to $({}^{\circ}T'', F, \widehat{\mathcal{B}_o^{0,0}})$ is the graph of maps $\rho \circ \varphi : {}^{\circ}T'' \to {}^{\circ}T' \oplus F$ and $\rho \circ \varphi|_{\widehat{\mathcal{B}_o^{0,0}}} : \widehat{\mathcal{B}_o^{0,0}} \to \widehat{\mathcal{B}_o^{0,0}}$. Denote this relative almost CR structure on (M_0, N_0) by $({}^{\circ}T''_{\varphi}, F_{\varphi}, \widehat{\mathcal{B}_o^{0,0}})$. Thus relative almost CR structures on (M_0, N_0) sufficiently close to $({}^{\circ}T'', F, \widehat{\mathcal{B}_o^{0,0}})$ are parametrized by elements of $\Gamma(M_0, \widehat{\mathcal{B}_o^{0,1}})$. For a sufficiently small φ in $\Gamma(M_0, \widehat{\mathcal{B}_o^{0,1}})$, $({}^{\circ}T''_{\varphi}, F_{\varphi}, \widehat{\mathcal{B}_o^{0,0}})$ is a relative CR structure if and only if $\Phi(\varphi) = \sum_{j=1}^m \Phi^j(\varphi) \partial/\partial z^j$ vanishes identically. Here $\Phi^j(\varphi) = \overline{\partial}_b \varphi^j - \sum_{\alpha,\beta=1}^m (\partial^{\rho} \varphi^j_a / \partial z^{\beta}) \varphi^{\beta} \land \overline{Z}^{\alpha} + \varphi(h) \land \sum_{\alpha=1}^m \varphi^j_a (\overline{\partial}_b \overline{p}^{\alpha} - \sum_{\beta=1}^m (\partial^{\rho} \overline{p}^{\alpha} / \partial z^{\beta}) \varphi^{\beta}$, where $\varphi^{\beta} = \sum_{\alpha=1}^m \varphi^{\beta}_a \overline{Z}^{\alpha}$.

(3.3) Now we show the important relation between a relative complex structure and a relative CR structure.

Key lemma. Let $\omega \in \Gamma(\overline{M}, \widetilde{\mathcal{B}^{0,1}})$ and $\varphi \in \Gamma(M_0, \widetilde{\mathcal{B}^{0,1}_o})$. Then $(T''_{\omega}|_{M_0}) \cap CTM_0 = {}^{\circ}T''_{\varphi}$ and $(\mathfrak{T}''_{\omega}|_{M_0}) \cap C^{\infty}({}^{\circ}T''_{\varphi}) = {}^{\circ}\mathfrak{T}''_{\varphi}$ are satisfied if and only if $\tau_{\varphi}(\omega) \equiv \tau(\omega) + \varphi(h)\nu(\omega) = \varphi$, where $i^*\omega = \tau(\omega) + \nu(\omega) \wedge i^*\bar{\partial}h$ and $\mathfrak{T}''_{\varphi} = \widetilde{\mathcal{B}^{0,0}_{o\varphi}}$.

§4. Extending problem of relative CR structures.

(4.1) Suppose that (T''_w, \mathcal{T}''_w) is a relative complex structure. We set ${}^{\circ}E'' = (T''_w|_{M_0}) \cap CTM_0$ and ${}^{\circ}\mathcal{T}'' = (\mathcal{T}''_w|_{M_0}) \cap \mathcal{C}^{\infty}({}^{\circ}E'')$, where $\mathcal{C}^{\infty}({}^{\circ}E'')$ is the sheaf of germs of \mathcal{C}^{∞} sections of ${}^{\circ}E''$ over M_0 . Then $({}^{\circ}E'', G, {}^{\circ}\mathcal{T}'')$ is a relative CR structure, where $CTM_0 = {}^{\circ}E'' \oplus {}^{\circ}E' \oplus G$, ${}^{\circ}E' = {}^{\circ}E''$. The converse of this statement for deformations of relative CR structures gives an extension problem mentioned in the preface. Let φ be in a neighborhood of zero in $\Gamma(M_0, \widehat{\mathcal{B}}^{0,1}_0)$ in some Sobolev norm topology and $({}^{\circ}T''_{\varphi}, F_{\varphi}, {}^{\circ}\mathcal{T}''_{\varphi})$ is a relative CR structure. Then the question is to find $\omega \in \Gamma(\overline{M}, \widehat{\mathcal{B}}^{0,1})$ such that $(T''_w|_{M_0}) \cap C^{\infty}({}^{\circ}T''_{\varphi}) = {}^{\circ}\mathcal{T}''_{\varphi}$ and (T''_w, \mathcal{T}''_w) is a relative complex structure.

In view of Key lemma this problem reduces to the non-linear boundary value problem $\Omega(\omega)=0$, $\tau_{\omega}(\omega)=\varphi$ with the necessary condition $\Phi(\varphi)=0$.

(4.2) We now state here our problems.

Problem I. Can any deformations of the relative CR structure on (M_0, N_0) be directly extended to deformations of $(\overline{M}, \overline{N})$?

As a special case of this problem, we ask

Problem I*. Does there exist the versal family (in the sense of [3]) of deformations of $(\overline{M}, \overline{N})$ which leaves the relative CR structure on (M_0, N_0) fixed?

§ 5. Main theorem. In this section, we shall give an answer to Problems I and I* discussed in §4. For this purpose, we make the following

Definition 5.1. The pair (M_0, N_0) of the boundaries satisfies condition Y(q) if at every point of M_0 (resp. N_0) the Levi form of h (resp. $h|_{\overline{N}}$) on \overline{M} (resp. \overline{N}) has at least q (resp. q) positive eigenvalues, where h is the C^{∞} map as defined in (1.2).

Then we state here our main

Theorem. (I) Suppose that $\dim_c \overline{N} \ge 2$, the pair (M_0, N_0) satisfies condition Y(2) and $H^2_c(M, \mathbb{Z}_{\overline{N}/\overline{M}}) = 0$, where $H^2_c(M, \mathbb{Z}_{\overline{N}/\overline{M}})$ is the second compactly supported cohomology group with coefficients in $\mathbb{Z}_{\overline{N}/\overline{M}}$. If φ is a sufficiently small element in $\Gamma(M_0, \widetilde{\mathcal{D}}_0^{0,1})$ with $\Phi(\varphi) = 0$, then one can find $\omega \in \Gamma(\overline{M}, \widetilde{\mathcal{D}}_0^{0,1})$ such that $\Omega(\omega) = 0$ and $\tau_{\varphi}(\omega) = \varphi$.

(I*) Suppose that $\dim_c \overline{N} \ge 1$ and condition Y(1) is satisfied. Then there exists the versal family of deformations of $(\overline{M}, \overline{N})$ leaving the relative CR structure on (M_0, N_0) fixed.

First we notice that the proof of Theorem is reduced to the case $\operatorname{codim}_c \overline{N}=1$ by using the monoidal transformation of \overline{M} with the center \overline{N} (cf. [2]). In this case we can show that by applying the method in our previous paper [3], the Kohn-Morrey basic estimate [1, 4] and a Nash-Moser type inverse mapping theorem [5].

References

- Folland, G. B. and Kohn, J. J.: The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies, vol. 75, Princeton University Press (1972).
- [2] Fujiki, A. and Nakano, S.: Supplement to "On the inverse of monoidal transformation". Publ. RIMS, Kyoto Univ., 7, 637-644 (1971/72).
- [3] Hotta, K.: The relative deformation theory (to appear).
- [4] Kohn, J. J. and Nirenberg, L.: Non-coercive boundary value problems. Comm. Pure Appl. Math., 18, 443-492 (1965).
- [5] Kuranishi, M.: Deformations of isolated singularities and $\bar{\partial}_b$. Columbia University (1973) (preprint).

No. 2]