3. On the First Eigenvalue of Some Quasilinear Elliptic Equations

By Mitsuharu ÔTANI^{*)} and Toshiaki TESHIMA^{**)}

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1988)

1. Introduction. Let Ω be a bounded domain in $\mathbb{R}^{\mathbb{N}}$ with smooth boundary $\partial \Omega$. For given $p \in (1, +\infty)$, $a \in L^{\infty}_{+}(\Omega) = \{f \in L^{\infty}(\Omega); f(x) \ge 0 \text{ a.e.} x \in \Omega\}$ and $b \in L^{\infty}_{0}(\Omega) = \{f \in L^{\infty}(\Omega); f^{+}(\cdot) = \max(f(\cdot), 0) \equiv 0\}$, we consider the following eigenvalue problem:

 $(E)_{\lambda} \qquad \begin{cases} (1) & -\varDelta_{p}u(x) + a(x)|u|^{p-2}u(x) = \lambda b(x)|u|^{p-2}u(x), \ x \in \Omega, \ \lambda > 0, \\ (2) & u(x) = 0, \ x \in \partial \Omega, \end{cases}$

where $\Delta_p u(x) = \operatorname{div}(|\nabla u|^{p-2} \nabla u(x)).$

The main purpose of this paper is to show that there exists a positive number λ_1 , the first eigenvalue, such that $(E)_{\lambda}$ admits a positive solution if and only if $\lambda = \lambda_1$ and that λ_1 is simple, i.e., solutions of $(E)_{\lambda_1}$ forms a one dimensional subspace of $W_0^{1,p}(\Omega)$. Here u is said to be a solution of $(E)_{\lambda}$ if u belongs to $W_0^{1,p}(\Omega)$ and satisfies (1) in the sense of distribution. For the case where $a \equiv 0$ and $b \equiv 1$, the simplicity of λ_1 has been shown under some additional assumptions. When N=1, it is shown in [2] that all eigenvalues λ_k $(k \in N)$ are simple and that all eigenfunctions u_k associated with λ_k have (k-1) isolated zeros in Ω . If Ω is a ball, DeThélin [5] showed the simplicity of λ_1 in the class of radially symmetric solutions by using the theory of rearrangement. Recently, Sakaguchi [4] made an argument based on a strong maximum principle to prove that λ_1 is simple provided that $\partial \Omega$ is connected. Our method of proof is quite different from those in [2], [4], [5], and requires neither the connectedness of $\partial \Omega$ nor the positivity of $b(\cdot)$.

We define $\lambda_1 = \lambda_1(a, b)$ by

(3) $1/\lambda_1 = \sup \{R(v) := B(v)/A(v); v \in W := W_0^{1,p}(\Omega) \setminus \{0\}\},\$ where $A(v) = \int_{\Omega} \{|\nabla u(x)|^p + a(x)|u(x)|^p\} dx$ and $B(v) = \int_{\Omega} b(x)|u(x)|^p dx.$ Then our main result is stated as follows:

Theorem 1. Eigenvalue problem $(E)_{\lambda}$ has a nontrivial nonnegative solution u if and only if $\lambda = \lambda_1$ and $J_{\lambda_1}(u) := A(u) - \lambda_1 B(u) = 0$. Furthermore, the eigenvalue λ_1 is simple, more precisely, the set of all solutions of $(E)_{\lambda_1}$ consists of $\{tu_1; t \in \mathbb{R}^1\}$, where u_1 is a solution of $(E)_{\lambda_1}$ such that $u_1 \in C^{1,\theta}(\overline{\Omega})$ for some $\theta \in (0, 1)$ and $u_1(x) > 0$ for all $x \in \Omega$.

2. Some lemmas. To prove Theorem 1, we here prepare some lemmas.

^{*)} Department of Mathematics, Tokai University.

^{**)} Department of Applied Physics, Waseda University.

Lemma 2. Let u be a solution of $(E)_{\lambda}$. Then $u \in C^{1,\theta}(\overline{\Omega})$ for some $\theta \in (0, 1)$. Furthermore, if $u \ge 0$ in Ω , then u > 0 in Ω .

Proof. The very same verification as for Theorem 2 of [3] assures that $u \in L^{\infty}(\Omega)$. Then above assertions follows from Proposition 3.7 of [6] and Theorem 1.1 of [7]. Q.E.D.

Lemma 3. Let $F(x, u): \Omega \times \mathbb{R}^1 \to \mathbb{R}^1$ be measurable in x and monotone nondecreasing in u. Let $u_1, u_2 \in W^{1,p}(\Omega)$ satisfy

(4)
$$-\Delta_p u_1(x) + F(x, u_1(x)) \leq -\Delta_p u_2(x) + F(x, u_2(x))$$

in $W^{-1, p'}(\Omega), \quad p' = p/(p-1).$

Then $u_1 \leq u_2$ on $\partial \Omega$ implies $u_1 \leq u_2$ in Ω .

Proof. Put $w(x) = \max(u_1(x) - u_2(x), 0)$. Then, by Corollary A.6 of [1], $w \in W_0^{1,p}(\Omega)$. Multiplying (4) by w and using the monotonicity of $F(x, \cdot)$, we find that the integration of $(|\nabla u_1|^{p-2}\nabla u_1 - |\nabla u_2|^{p-2}\nabla u_2)(\nabla u_1 - \nabla u_2)$ over $D = \{x \in \Omega; u_1(x) \ge u_2(x)\}$ is non-positive. Since $-\Delta_p$ is strictly monotone, we deduce that $\nabla u_1 = \nabla u_2$ in D, whence follows $\nabla w = 0$, i.e., $u_1 \le u_2$ in Ω . Q.E.D.

Lemma 4. Let $u \in W_0^{1,p}(\Omega) \cap C^1(\overline{\Omega})$ satisfy $(-A u(x) + Mu^{p-1}(x) \ge 0$ in $W^{-1,p'}(\Omega)$

(5)
$$\begin{cases} -\Delta_p u(x) + M u^{p-1}(x) \ge 0 & \text{in } W^{-1,p'}(\Omega), \ M \ge 0, \\ u > 0 & \text{in } \Omega, \ u = 0 \text{ on } \partial \Omega. \end{cases}$$

Then the outer normal derivative $\partial u/\partial n$ of u is strictly negative on $\partial \Omega$.

Proof. For every $x_0 \in \partial \Omega$ and a sufficiently small R > 0, there exists $y \in \Omega$ such that $B_{2R}(y) \subset \Omega$ and $x_0 \in \partial B_{2R}(y) \cap \partial \Omega$, where $B_{\rho}(z) = \{x \in \mathbb{R}^N; |z-x| < \rho\}$. Set

(6) $v(x) = \alpha (3R - r)^{\delta} - \alpha R^{\delta}, \quad r = |x - y|, \quad \alpha > 0.$

Then it is easy to see that α and R (resp. δ) may be chosen small (resp. large) enough so that $-\Delta_p v + M v^{p-1} \leq 0$ in $\Omega_R = B_{2R}(y) \setminus \overline{B_R(y)}$ and $v \leq u$ on $\partial \Omega_R$. Hence, from Lemma 3, we deduce that $v(x) - v(x_0) \leq u(x) - u(x_0)$ for all $x \in \Omega_R$, whence follows the assertion. (See Lemma A.3 of [4].) Q.E.D.

3. Proof of Theorem 1. The proof is devided into five steps.

(i) $0 < \lambda_1 < +\infty$: Suppose that $B(u) \leq 0$ for all $u \in W_0^{1,p}(\Omega)$. Then, since there exist $v_n \in W_0^{1,p}(\Omega)$ such that $v_n \geq 0$ and $v_n \rightarrow b^+ = \max(b, 0)$ in $L^p(\Omega)$, we obtain $B(b^+) \leq 0$, which gives the contradiction $b^+ \equiv 0$. Hence there exists an element $u_0 \in W_0^{1,p}(\Omega)$ satisfying $B(u_0) > 0$. Thus $0 < \lambda_1 < 1/R(u_0)$. Furthermore, by multiplying (1) by u and using Hölder's inequality, we can obtain the lower bound of $\lambda_1: \lambda_1 \geq (C_q |b^+|_{L^{\infty}} |\Omega_+|^{(q-p)/q})^{-1}$ for all q such that $C_q := \sup \{|u|_{L^q} / |\nabla u|_{L^p}; u \in W\} < +\infty$, where $\Omega_+ = \{x \in \Omega; b(x) > 0\}$.

(ii) $(E)_{\lambda}$ has no nontrivial solution for $\lambda \in [0, \lambda_1)$: Let u be a solution of $(E)_{\lambda}$. Then multiplication of (1) by u gives $R(u)=1/\lambda>1/\lambda_1$, which contradicts (3).

(iii) u is a solution of $(E)_{\lambda_1}$ if and only if $J_{\lambda_1}(u)=0$: The "only if" part can be proved as in step (ii). Let $J_{\lambda_1}(u)=0$, then (3) implies $J_{\lambda_1}(u)$ $=\min\{J_{\lambda_1}(u); u \in W\}=0$. Hence Fréchet derivative of J_{λ_1} at u vanishes, i. e., u is a solution of $(E)_{\lambda_1}$. Moreover, since $J_{\lambda}(u)=J_{\lambda}(|u|)$ and $W_0^{1,p}(\Omega)$ is compactly embedded in $L^p(\Omega)$, there exists a non-negative function u_1 such

No. 1]

that $J_{\lambda_1}(u_1)=0$. Then, by Lemma 2, $(E)_{\lambda_1}$ has always a positive solution $u_1 \in C^{1,\theta}(\overline{\Omega})$.

(iv) λ_1 is simple: Let u and v be positive solutions of $(E)_{\lambda_1}$. Then $M(t, x) = \max(u(x), tv(x))$ and $m(t, x) = \min(u(x), tv(x))$ belong to $W_0^{1,p}(\Omega)$ and satisfy $J_{\lambda_1}(M(t, \cdot)) + J_{\lambda_1}(m(t, \cdot)) = J_{\lambda_1}(u) + J_{\lambda_1}(tv) = 0$ (see [1]). Hence, by (3), $J_{\lambda_1}(M(t, \cdot)) = J_{\lambda_1}(m(t, \cdot)) = 0$. Then M(t, x) is a solution of $(E)_{\lambda_1}$, and by Lemma 2 $M(t, \cdot) \in C^{1,\theta}(\overline{\Omega})$ for all $t \ge 0$. For any $x_0 \in \Omega$, set $t_0 = u(x_0)/v(x_0) > 0$. Since $u(x_0 + he) - u(x_0) \le M(t_0, x_0 + he) - M(t_0, x_0)$ for all unit vectors e, dividing this inequality by h > 0 or h < 0, and letting $h \to \pm 0$, we find $\nabla_x u(x_0) = \nabla_x M(t_0, x_0)$, and similarly $\nabla_x M(t_0, x_0) = t_0 \nabla_x (x_0)$. Thus we obtain $\nabla_x (u/v)(x_0) = 0$, i.e., $u(x)/v(x) \equiv \text{Const.}$ in Ω .

(v) $(E)_{\lambda}$ has no positive solution for $\lambda > \lambda_1$: Let u and v be positive solutions of $(E)_{\lambda_1}$ and $(E)_{\lambda}$ respectively. By virtue of Lemmas 2 and 4, u and v may be choosen so that $u \leq v$ in Ω . For the time being, assume $b \geq 0$. Then $-\Delta_p u + au^{p-1} = \lambda_1 bu^{p-1} \leq \lambda_1 bv^{p-1} = -\Delta_p (\eta v) + a(\eta v)^{p-1}$, where $\eta = (\lambda_1/\lambda)^{1/(p-1)} < 1$. Therefore Lemma 3 assures that $u \leq \eta v$ in Ω . Repeating this procedure, we deduce that $u \leq \eta^n v$ in Ω for all $n \in N$, whence follows $u \equiv 0$. This is a contradiction. Let $b^+ = \max(b, 0)$ and $b^- = \max(-b, 0)$. Then above results say that the equation $-\Delta_p w + \{a + \lambda b^-\} w^{p-1} = \mu b^+ w^{p-1}$ has a nontrivial positive solution w if and only if $\mu = \mu_1 = \lambda_1(a + \lambda b^-, b^+)$ and $I_{\mu_1}(w) = A(w) + \lambda \int_{\Omega} b^-(x) |w|^p dx - \mu_1 \int_{\Omega} b^+(x) |w|^p dx = \min\{I_{\mu_1}(z); z \in W\} = 0$. Since v is a positive solution of the above equation with $\mu_1 = \lambda$, we deduce that $\mu_1 = \lambda$ and $I_{\mu_1}(v) = I_{\lambda}(v) = J_{\lambda}(v) = \min\{J_{\lambda}(z); z \in W\} = 0$. However, $J_{\lambda}(u) = J_{\lambda_1}(u) - (\lambda - \lambda_1)B(u) < 0$. This is a contradiction. Q.E.D.

4. Remark. By the same argument as in [4] with obvious modifications, we can show the following result: "Let $a \equiv 0$, $b \ge 0$ and $b \in C^{\theta}(\Omega)$ for some $\theta \in (0, 1)$, and let Ω be convex and $b(\cdot)$ be concave. Then, every positive solution u of $(E)_{\lambda_1}$ is log-concave, i.e., log u is a concave function."

References

- [1] D. Kinderlehrer and G. Stampacchia: An Introduction of Variational Inequalities and their Applications. Academic Press (1980).
- [2] M. Ötani: A remark on certain nonlinear elliptic equations. Proceedings of the Faculty of Sci. Tokai Univ., 19, 23-28 (1984).
- [3] ——: Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Functional Analysis (to appear).
- [4] S. Sakaguchi: Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems (preprint).
- [5] F. DeThélin: Sur l'espace propre associé à la première valeur propre du pseudo-Laplacien. C. R. Acad. Sci. Paris, 303, 355-358 (1986).
- [6] P. Tolksdorf: On the Dirichlet problem for quasilinear equations in domain with conical boundary points. Comm. P. D. E., 20, 773-817 (1983).
- [7] N. S. Trudinger: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math., 20, 721-747 (1967).