3. On the First Eigenvalue of Some Quasilinear Elliptic Equations

By Mitsuharu Ôtani*) and Toshiaki Teshima**)
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1988)

1. Introduction. Let Ω be a bounded domain in \boldsymbol{R}^{N} with smooth boundary $\partial \Omega$. For given $p \in(1,+\infty), a \in L_{+}^{\infty}(\Omega)=\left\{f \in L^{\infty}(\Omega) ; f(x) \geq 0\right.$ a.e. $x \in \Omega\}$ and $b \in L_{0}^{\infty}(\Omega)=\left\{f \in L^{\infty}(\Omega) ; f^{+}(\cdot)=\max (f(\cdot), 0) \neq 0\right\}$, we consider the following eigenvalue problem:

$$
(E)_{\lambda} \quad\left\{\begin{array}{l}
(1) \quad-\Delta_{p} u(x)+a(x)|u|^{p-2} u(x)=\lambda b(x)|u|^{p-2} u(x), x \in \Omega, \lambda>0, \\
(2) \quad u(x)=0, x \in \partial \Omega
\end{array}\right.
$$

where $\Delta_{p} u(x)=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u(x)\right)$.
The main purpose of this paper is to show that there exists a positive number λ_{1}, the first eigenvalue, such that $(E)_{\lambda}$ admits a positive solution if and only if $\lambda=\lambda_{1}$ and that λ_{1} is simple, i.e., solutions of $(E)_{\lambda_{1}}$ forms a one dimensional subspace of $W_{0}^{1, p}(\Omega)$. Here u is said to be a solution of $(E)_{\lambda}$ if u belongs to $W_{0}^{1, p}(\Omega)$ and satisfies (1) in the sense of distribution. For the case where $a \equiv 0$ and $b \equiv 1$, the simplicity of λ_{1} has been shown under some additional assumptions. When $N=1$, it is shown in [2] that all eigenvalues $\lambda_{k}(k \in N)$ are simple and that all eigenfunctions u_{k} associated with λ_{k} have ($k-1$) isolated zeros in Ω. If Ω is a ball, DeThélin [5] showed the simplicity of λ_{1} in the class of radially symmetric solutions by using the theory of rearrangement. Recently, Sakaguchi [4] made an argument based on a strong maximum principle to prove that λ_{1} is simple provided that $\partial \Omega$ is connected. Our method of proof is quite different from those in [2], [4], [5], and requires neither the connectedness of $\partial \Omega$ nor the positivity of $b(\cdot)$.

We define $\lambda_{1}=\lambda_{1}(a, b)$ by

$$
\begin{equation*}
1 / \lambda_{1}=\sup \left\{R(v):=B(v) / A(v) ; v \in W:=W_{0}^{1, p}(\Omega) \backslash\{0\}\right\}, \tag{3}
\end{equation*}
$$

where $A(v)=\int_{\Omega}\left\{|\nabla u(x)|^{p}+a(x)|u(x)|^{p}\right\} d x$ and $B(v)=\int_{\Omega} b(x)|u(x)|^{p} d x$. Then our main result is stated as follows:

Theorem 1. Eigenvalue problem $(E)_{\lambda}$ has a nontrivial nonnegative solution u if and only if $\lambda=\lambda_{1}$ and $J_{\lambda_{1}}(u):=A(u)-\lambda_{1} B(u)=0$. Furthermore, the eigenvalue λ_{1} is simple, more precisely, the set of all solutions of $(E)_{\lambda_{1}}$ consists of $\left\{t u_{1} ; t \in \boldsymbol{R}^{1}\right\}$, where u_{1} is a solution of $(E)_{\lambda_{1}}$ such that $u_{1} \in C^{1, \theta}(\bar{\Omega})$ for some $\theta \in(0,1)$ and $u_{1}(x)>0$ for all $x \in \Omega$.
2. Some lemmas. To prove Theorem 1, we here prepare some lemmas.

[^0]Lemma 2. Let u be a solution of $(E)_{\lambda}$. Then $u \in C^{1, \theta}(\bar{\Omega})$ for some $\theta \in(0,1)$. Furthermore, if $u \geqq 0$ in Ω, then $u>0$ in Ω.

Proof. The very same verification as for Theorem 2 of [3] assures that $u \in L^{\infty}(\Omega)$. Then above assertions follows from Proposition 3.7 of [6] and Theorem 1.1 of [7].
Q.E.D.

Lemma 3. Let $F(x, u): \Omega \times R^{1} \rightarrow R^{1}$ be measurable in x and monotone nondecreasing in u. Let $u_{1}, u_{2} \in W^{1, p}(\Omega)$ satisfy

$$
\begin{gather*}
-\Delta_{p} u_{1}(x)+F\left(x, u_{1}(x)\right) \leqq-\Delta_{p} u_{2}(x)+F\left(x, u_{2}(x)\right) \tag{4}\\
\text { in } W^{-1, p^{\prime}}(\Omega), \quad p^{\prime}=p /(p-1)
\end{gather*}
$$

Then $u_{1} \leqq u_{2}$ on $\partial \Omega$ implies $u_{1} \leqq u_{2}$ in Ω.
Proof. Put $w(x)=\max \left(u_{1}(x)-u_{2}(x), 0\right)$. Then, by Corollary A. 6 of [1], $w \in W_{0}^{1, p}(\Omega)$. Multiplying (4) by w and using the monotonicity of $F(x, \cdot)$, we find that the integration of $\left(\left|\nabla u_{1}\right|^{p-2} \nabla u_{1}-\left|\nabla u_{2}\right|^{p-2} \nabla u_{2}\right)\left(\nabla u_{1}-\nabla u_{2}\right)$ over $D=\left\{x \in \Omega ; u_{1}(x) \geqq u_{2}(x)\right\}$ is non-positive. Since $-\Delta_{p}$ is strictly monotone, we deduce that $\nabla u_{1}=\nabla u_{2}$ in D, whence follows $\nabla w=0$, i.e., $u_{1} \leqq u_{2}$ in Ω.
Q.E.D.

Lemma 4. Let $u \in W_{0}^{1, p}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfy

$$
\left\{\begin{array}{l}
-\Delta_{p} u(x)+M u^{p-1}(x) \geqq 0 \tag{5}\\
u>0 \quad \text { in } \Omega, u=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Then the outer normal derivative $\partial u / \partial n$ of u is strictly negative on $\partial \Omega$.
Proof. For every $x_{0} \in \partial \Omega$ and a sufficiently small $R>0$, there exists $y \in \Omega$ such that $B_{2 R}(y) \subset \Omega$ and $x_{0} \in \partial B_{2 R}(y) \cap \partial \Omega$, where $B_{\rho}(z)=\left\{x \in \boldsymbol{R}^{N}\right.$; $|z-x|<\rho\}$. Set
(6) $\quad v(x)=\alpha(3 R-r)^{\delta}-\alpha R^{\delta}, \quad r=|x-y|, \quad \alpha>0$.

Then it is easy to see that α and R (resp. δ) may be chosen small (resp. large) enough so that $-\Delta_{p} v+M v^{p-1} \leqq 0$ in $\Omega_{R}=B_{2 R}(y) \backslash \overline{B_{R}(y)}$ and $v \leqq u$ on $\partial \Omega_{R}$. Hence, from Lemma 3, we deduce that $v(x)-v\left(x_{0}\right) \leqq u(x)-u\left(x_{0}\right)$ for all $x \in \Omega_{R}$, whence follows the assertion. (See Lemma A. 3 of [4].) Q.E.D.
3. Proof of Theorem 1. The proof is devided into five steps.
(i) $0<\lambda_{1}<+\infty$: Suppose that $B(u) \leqq 0$ for all $u \in W_{0}^{1, p}(\Omega)$. Then, since there exist $v_{n} \in W_{0}^{1, p}(\Omega)$ such that $v_{n} \geqq 0$ and $v_{n} \rightarrow b^{+}=\max (b, 0)$ in $L^{p}(\Omega)$, we obtain $B\left(b^{+}\right) \leqq 0$, which gives the contradiction $b^{+} \equiv 0$. Hence there exists an element $u_{0} \in W_{0}^{1, p}(\Omega)$ satisfying $B\left(u_{0}\right)>0$. Thus $0<\lambda_{1}<1 / R\left(u_{0}\right)$. Furthermore, by multiplying (1) by u and using Hölder's inequality, we can obtain the lower bound of $\lambda_{1}: \lambda_{1} \geqq\left(C_{q}\left|b^{+}\right|_{L^{\infty}}\left|\Omega_{+}\right|^{(q-p) / q}\right)^{-1}$ for all q such that $C_{q}:=\sup \left\{\left.|u|_{L q}| | \nabla u\right|_{L^{p}} ; u \in W\right\}<+\infty$, where $\Omega_{+}=\{x \in \Omega ; b(x)>0\}$.
(ii) $(E)_{\lambda}$ has no nontrivial solution for $\lambda \in\left[0, \lambda_{1}\right)$: Let u be a solution of $(E)_{\lambda}$. Then multiplication of (1) by u gives $R(u)=1 / \lambda>1 / \lambda_{1}$, which contradicts (3).
(iii) u is a solution of $(E)_{\lambda_{1}}$ if and only if $J_{\lambda_{1}}(u)=0$: The "only if" part can be proved as in step (ii). Let $J_{\lambda_{1}}(u)=0$, then (3) implies $J_{\lambda_{1}}(u)$ $=\min \left\{J_{\lambda_{1}}(u) ; u \in W\right\}=0$. Hence Fréchet derivative of $J_{\lambda_{1}}$ at u vanishes, i. e., u is a solution of $(E)_{\lambda_{1}}$. Moreover, since $J_{\lambda}(u)=J_{\lambda}(|u|)$ and $W_{0}^{1, p}(\Omega)$ is compactly embedded in $L^{p}(\Omega)$, there exists a non-negative function u_{1} such
that $J_{\lambda_{1}}\left(u_{1}\right)=0$. Then, by Lemma $2,(E)_{\lambda_{1}}$ has always a positive solution $u_{1} \in C^{1, \theta}(\bar{\Omega})$.
(iv) λ_{1} is simple: Let u and v be positive solutions of $(E)_{\lambda_{1}}$. Then $M(t, x)=\max (u(x), t v(x))$ and $m(t, x)=\min (u(x), t v(x))$ belong to $W_{0}^{1, p}(\Omega)$ and satisfy $J_{\lambda_{1}}(M(t, \cdot))+J_{\lambda_{1}}(m(t, \cdot))=J_{\lambda_{1}}(u)+J_{\lambda_{1}}(t v)=0$ (see [1]). Hence, by (3), $J_{\lambda_{1}}(M(t, \cdot))=J_{\lambda_{1}}(m(t, \cdot))=0$. Then $M(t, x)$ is a solution of $(E)_{\lambda_{1}}$, and by Lemma $2 M(t, \cdot) \in C^{1, \theta}(\bar{\Omega})$ for all $t \geqq 0$. For any $x_{0} \in \Omega$, set t_{0} $=u\left(x_{0}\right) / v\left(x_{0}\right)>0$. Since $u\left(x_{0}+h e\right)-u\left(x_{0}\right) \leqq M\left(t_{0}, x_{0}+h e\right)-M\left(t_{0}, x_{0}\right)$ for all unit vectors e, dividing this inequality by $h>0$ or $h<0$, and letting h $\rightarrow \pm 0$, we find $\nabla_{x} u\left(x_{0}\right)=\nabla_{x} M\left(t_{0}, x_{0}\right)$, and similarly $\nabla_{x} M\left(t_{0}, x_{0}\right)=t_{0} \nabla_{x}\left(x_{0}\right)$. Thus we obtain $\nabla_{x}(u / v)\left(x_{0}\right)=0$, i.e., $u(x) / v(x) \equiv$ Const. in Ω.
(v) $(E)_{\lambda}$ has no positive solution for $\lambda>\lambda_{1}$: Let u and v be positive solutions of $(E)_{\lambda_{1}}$ and $(E)_{\lambda}$ respectively. By virtue of Lemmas 2 and 4, u and v may be choosen so that $u \leqq v$ in Ω. For the time being, assume $b \geqq 0$. Then $-\Delta_{p} u+a u^{p-1}=\lambda_{1} b u^{p-1} \leqq \lambda_{1} b v^{p-1}=-\Delta_{p}(\eta v)+a(\eta v)^{p-1}$, where $\eta=$ $\left(\lambda_{1} / \lambda\right)^{1 /(p-1)}<1$. Therefore Lemma 3 assures that $u \leqq \eta v$ in Ω. Repeating this procedure, we deduce that $u \leqq \eta^{n} v$ in Ω for all $n \in N$, whence follows $u \equiv 0$. This is a contradiction. Let $b^{+}=\max (b, 0)$ and $b^{-}=\max (-b, 0)$. Then above results say that the equation $-\Delta_{p} w+\left\{a+\lambda b^{-}\right\} w^{p-1}=\mu b^{+} w^{p-1}$ has a nontrivial positive solution w if and only if $\mu=\mu_{1}=\lambda_{1}\left(a+\lambda b^{-}, b^{+}\right)$ and $I_{\mu_{1}}(w)=A(w)+\lambda \int_{\Omega} b^{-}(x)|w|^{p} d x-\mu_{1} \int_{\Omega} b^{+}(x)|w|^{p} d x=\min \left\{I_{\mu_{1}}(z) ; z \in W\right\}=0$. Since v is a positive solution of the above equation with $\mu_{1}=\lambda$, we deduce that $\mu_{1}=\lambda$ and $I_{\mu_{1}}(v)=I_{\lambda}(v)=J_{\lambda}(v)=\min \left\{J_{\lambda}(z) ; z \in W\right\}=0$. However, $J_{\lambda}(u)$ $=J_{\lambda_{1}}(u)-\left(\lambda-\lambda_{1}\right) B(u)<0$. This is a contradiction. Q.E.D.
4. Remark. By the same argument as in [4] with obvious modifications, we can show the following result: "Let $a \equiv 0, b \geqq 0$ and $b \in C^{\theta}(\Omega)$ for some $\theta \in(0,1)$, and let Ω be convex and $b(\cdot)$ be concave. Then, every positive solution u of $(E)_{\lambda_{1}}$ is \log-concave, i.e., $\log u$ is a concave function."

References

[1] D. Kinderlehrer and G. Stampacchia: An Introduction of Variational Inequalities and their Applications. Academic Press (1980).
[2] M. Ôtani: A remark on certain nonlinear elliptic equations. Proceedings of the Faculty of Sci. Tokai Univ., 19, 23-28 (1984).
[3] -: Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations. J. Functional Analysis (to appear).
[4] S. Sakaguchi: Concavity properties of solutions to some degenerate quasilinear elliptic Dirichlet problems (preprint).
[5] F. DeThélin: Sur l'espace propre associé à la première valeur propre du pseudoLaplacien. C. R. Acad. Sci. Paris, 303, 355-358 (1986).
[6] P. Tolksdorf: On the Dirichlet problem for quasilinear equations in domain with conical boundary points. Comm. P. D. E., 20, 773-817 (1983).
[7] N. S. Trudinger: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math., 20, 721-747 (1967).

[^0]: *) Department of Mathematics, Tokai University.
 **) Department of Applied Physics, Waseda University.

