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1o Statement of the results and the conjecture. Chebyshev [2] as-
serted, in 1853, that

lim (-- 1) (-)/e-= oo,
+ p2

where p runs over the odd prime numbers, although the proof has never
been published. In act, in 1917, Hardy-Littlewood [3] and Landau [5]
have shown that the above statement is equivalent to the Generalized
Riemann Hypothesis (G.R.H.) for the Dirichlet L-unction L(s, z) with the
non-principal character Z mod 4. Later, Knapowski and Turan [4] have
extensively studied this subject, and proved among others that the ollow-
ing statement is equivalent to G.R.H. or L(s, Z)

lim , (-- 1)(-)/ log p e-(x)= oo.
x-*+0 p>2

The purpose of the present article is to give a generalization of Chebyshev’s
conjecture and prove its equivalence to G.R.H. for L(s, Z) for some special
cases.

To state our theorem we define the function (x, k) by

FI(8):: Xs-I(x, k)dx,

where F(s) is the F-function and k is an integer 1. (x, 1)-e and
(x, 2)=2K0(2/x) with the Bessel function Ko(x). We shall prove the
following theorems.

Theorem 1. Suppose that 0<<0, where o may be >4. Then the
statement that

lim (-- 1)(-)/ e- ()"= c

is equivalent to G.R.H. for L(s, Z).
Theorem 2. The statement that

lim , (- 1)(-)/. log p.(xp, 2)-- -c
x-*+0 p2

is equivalent to G.R.H. for L(s, Z).
We may state our generalization of Chebyshev’s conjecture as follows.

Conjecture. (i) For any positive ,
lim _] (--1) (-)/- e-()"=
x-,+0 p2

(ii) For any integer kl,
lim (--1) (-x)/ (xp, k)=

+0

2. Proof of Theorem 2. We denote (x, 2) by f(x) and F2(s) by
F(s), for simplicity. We use the well known properties of L(s, Z), f(x) and
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F(s) without mentioning the references.
1 / F(s)(p,x)_dsI f+ F(s)L_(s, Z)x_ds= Z(p)logp
2i :-2i :-o ,

(-- 1)("-1)/2. log p. f(xp),
P

where m runs over the integers >__ 1. Moving the line of the integration to
Re (s) 1/2, we get for 0<x<x0

S_---- (- 1) (p-1)/2 log p f(xp)= , log p f(xp2)
p P

(-- 1)(p-1)/2 log p f(xp) F(p)x-p

p,m_3

+ log x-- (0, Z) + 2F’(1) (0, Z) -t- (0, Z) + O(x/)

S+S.+S+S+ O(x/),
say, where p runs over the non-trivial zeros of L(s, Z). We put T= 1Ix.

S<< , log/)-log +0(1) +
pm_T,m>=3 T<pmTl,m3

+ log p. e- @-/r(p/T)-I/
pm>T61,m_3

((log T , .1-t- logn.e -n’’’

pT15 n=2

(( Tv log T.
S((log T.
S ( + log p. f(xp) S+S, say.

S= f(v/T)d(v +R(v))= f(v/T)dv-2 f’(v/T)

+ 0(/T exp (-- C/iog T)),
where we put <<logp=v+R(v) and C is some positive absolute con-
stant. The last integral is

-j"/ (-- 1 +O(v/T))R(v)/v dv((/ T exp (-- C/log T).

We remark that

/- f(v/T)dv=
1//- --21gu--2C-21gu’l: (!)

+2
(k )..(k+ 1) du

1 ( 1 +q(k+l))-- 2Co+2
( !)(l+ 1) + 1

+ O0og/)>1.a
or >To, where we put (a)=F/F(a) and Co is the Euler constant.

he last integral is <<ex(--Clog T). We now assume G.N.H. for
(, Z) and write o=+ir. hen we get

cosh ffz)
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0.001x_/ 1 _/

>0 1/4 +’----- 0.0002x

where the first " is known to be 6 and we have used the estimate
e-r(1/4+’00.001 or ’6 and >0 1/(1/4+’01/5. Combining all the above
estimate, we get as xo+0

S 1.2x -1/2.

This proves that G.R.H. or L(s, Z) implies the equality in Theorem 2.
For the proo o the converse, we notice that for Re(s)1,

E Z(p) log p =f: x_l(E Z(p). log p.f(xp))dx.F(s)
p s p

Then we have only to use Hilfsatz o p. 2 and the same argument as in the
Section, 3 of Landau [5-I].

3. Proof of Theorem 1. Let be a positive number. We denote
ae-" by f(x) and F(s/o) by F(s). Using the same notations as in the
previous section, we get

I f f(uOdu+O(/Texp(--C/logT))

1 .1F(1/2a)+0(/T exp(-C/log T)).
/- 2

S+S<<J T exp(- C/log T).
For $3, we notice that under G.R.H.

I/"(p/) /(1" ]/)(/")-(/)e lI/, e(,,)I,
where

81p[ Jo (x+(x/ip])+ l)
Suppose that 0a<5 9. Then +y)(/")- is strictly decreasing
for6 and get

1 S < A() 1 A()

where we put A(a)=145.//2(1/a)(/)+(/")e"/46
other hand by Binet’s formula we get

(1/2a)F(1/2o) _>__ (1/2) (’/") (’/) e-’/%/->A()/5
provided that 0a<__4.19. Thus for 0a_<_4, we get

On the

By p. 147 of [3] or p. 215 o [5-II], we get
CS’---- (-- 1)-’)/ e-(x"

>. /x log (l/x)
This proves the half of Theorem 1. The rest is the same as the last part
of the previous section.

4. Concluding remarks. As is seen obviously, we have obtained,
in fact, a theorem for a more general function which is suitable for the
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argument above. As consequences, we may replace (xp, 2) in Theorem 2 by
4K(2/xp) or e-Xp/2Ko(xp/2). Knapowski-Turan’s function exp(--log(xp))
belongs to the same category. We remark only that the Mellin transform of

s /[(s+ 1/2)4K(2/x ) (or e-x/2Ko(x/2) or exp(--log2x)) is F4(s)/F(2s) (or F )/
or 2e, respectively). We remark finally that the condition on a in Theorem
1 may be relaxed a little if we get a numerical data of a few zeros of L(s, Z).
We have in fact used only the fact that the first ? is 6.
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