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Introduction. Let be a fixed prime number and u(q) denote the pro-/
completion of the topological undamental group o a compact Riemann
surface of genus g_2. So, we have

()--F/N,
where F is the free pro-/group o rank 2g generated by x, -.., x and N
is the closed normal subgroup of F which is normally generated by
[x:,xq+]...[x,x], [, being the commutator; [x, y]=xyx-y- (x, y eF).
We denote by Fq the outer automorphism group o zq) and call it the pro-/
mapping class group. Let

2: I"q -GSp (2g, Zt)
be the canonical homomorphism induced by the action of
(cf. Asada-Kaneko [2, 2]). We treat the case g-2. Then, our result is
the ollowing

Theorem. Assume that 15. Then, there exists an integer N_I such
that the following statement holds:

If A e GSp (4, Z) satisfies the condition A14 mod Iv, -I(CA) contains
more than one F2-con]ugacy class. Here, CA denotes the GSp(4, Zt)-con-
]ugacy class containing A.

In our previous paper [2, 6], we have proved this "indistinguisha-

bility of conjugacy class" under the assumption that g3. The method
adopted there is the "calculations modulo ()(3)", which does not seem to
work in case g---2. ((()(k)} denotes, as usual, the descending central
series of (q).) So, to prove the above theorem., we use the method "calcu-
lations modulo uq)(4)". Although this requires rather complicated calcu-
lations, it is carried out by using the "Lie algebra" of the nilpotent pro-/

group. ()/()(4).
For those results on the indistinguishability of conjugacy class of the

pro-/braid group and the motivation of these studies, see Ihara [3], [4],
Kaneko [5].

1. Preliminaries for proving theorem. To prove Theorem., we need
some preliminaries. As before, let u (=(:)) denote the pro-/ completion
of the topological fundamental group of a compact Riemann surface of
genus 2 and/a denote the automorphism group of u. For an automorphism
of , we put

s,(p)=xTx:( (1GIG4).
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Lemma 1. There exists an automorphism po of such that

/s(po)---- s2(po)------- 1 mod (4),
( 1 ) is(po)----[[x, x.], x2] mod (4),

s(po)---- [x, [x, x2]] mod (4).
Proof. This ollows from. our previous result [2, Theorem 1]. We

use the same notations as in [2]. Put s--(s modu(4)) with s--s.-1,
s= [[x, x], x] and s-- [x, [x, x]]. Then, s belongs to Kerf (Jacobi’s
identity). An element p0 of/ corresponding to s via ]. satisfies the above
condition.

In the rest of this section, we assume that 15. We use the termino-
logies and notations in Asada [1, 2]. Let denote the Lie algebra of the
nilpotent pro-/group, u/(4). Then, there exists a canonical isomorphism

d" Aut (/(4)) ;Aut .
An inner automorphism of u induces that of u/u(4), hence it acts naturally
on . Our next task is to study this action. For that purpose, we briefly
recall the definition of . Let L denote the free Lie algebra on (X, X., X,
over Z and L( denote its homogeneous o degree ] component (]1);

L() Then, the set I-[ L(:)(R)z Q has a natural structure o LieL=>_
algebra over Q. We define the Lie algebra over Z by

={a=(a)a e H L() ( Q, la e L() (1<_]<_3)}.
j21

Furthermore, the ideals (2_ k_4) of are defined by
={a ela=0 (1_]_k- 1)}.

Then, we have
=/,

where Y is the ideal of containing 2 such that / is, as an ideal o
/, generated by

log {[exp X1, exp X] [exp X, exp X]}
1 1IX1, X3] + IX2, X4] + --[X1, IX1, X3] + ---[X3, IX1, X3]]

1 1+ -[X, [X, Xd]+ -[X,, [X., Xd]+ (higher terms).

Thus, is (canonically) identified with the quotient of L/L(4) by the ideal
generated by

1 1IX,, X]+-IX,, [X, X]] +-[X, IX,, X]]

1 1+ [X., X,] +-[X, [X., X,]] + [X,, [X., Xd].

Then, it is easy to give a Zt-basis of g. We use the ollowing basis
)=3 (disjoint union), where

{X, X, X, X},
{V IX,, X.], V [X, Xd, V [X, X,], V,= [X, X], V= [X, X,]},

!--{[X, V,] (1_i_3), [X, V] (1_i_4), [X, V,] (1_i_5),
[X, Vi] (2_i_ 5)}.
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The canonical image of in g(k)/(k+ 1) gives a Z-basis of g(k)/g(k+ 1).
Let T be any element of g and Int (t) be the inner automorphism of

/(4) induced by t=exp T and Int(t), be the automorphism of induced
by Int (t). By a well-known formula

(exp z,)(exp z)(exp z,)-’=exp {n= 1.(ad Zl)n(z2)}n:

(an identity in Q[[z,, z]]o_oo,), we have
1Int (t).(X)-X+ [T, X] + -z[T, [T, X]] X e g.

Put

T--pX+ qV-- W
= =

with p,qeZ (1<_i<_4, 1<_]<_5) and W eg(3). By easy calculations, we
have

Lemma 2. For X=X, we have

Int(t).(X)=X-V+V+V- p+q+ [X, V]

+1[X, g]+( )[X, g]+( q)[X,g]l

(1 ) 1p+pp [X, V]+p,p [X, V] +p[X, V]

1

Let
"/ ;GSp (4, Z)

be the canonical homomorphism induced by the action of/ on /[, u] (cf.
[2, 1]). Let f be the composition of the two homomorphisms

/ ;Aut (/(4))
d
;Aut .

Furthermore, let f denote the composition of f with the canonical homo-
morphism

Aut >Aut ( F).

Lemma :. There exists an integer NI such that the following
statement holds"

( * ) If A e GSp (4, Z,) satisfies the condition A--1, mod , there exists
an element a of [ such that

( 2 ) { (a)=A,f(a)=l.
Proof. Put Kerf and /(1)= Ker ]. As Aut ( (R)z F) is a finite
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group., l is of finite index in /. So, 1/(1) is an index finite normal
subgroup of/ containing/(1). Thus, z//(1) contains a subgroup.

]-({A e GSp (4, Z)[A-- 1, mod/v})
for some N_I. From. this, the lemma follows immediately.

2. Proof of Theorem. Let N_I be an integer such that (*) in
Lemma 3 holds and assume that A e GSp (4, Z) satisfy A= 1, mod . Let
p0 and a be elements of/ satisfying (1) and (2) respectively. Then, ](a)=
](ap0)=A. It suffices to show that
(**) rat- :=/=apo Int () for any r e/ and any e .
To see this, we use the homomorphism f. By (2), we have f(rar-)=l for
any r e/. On the other hand, f(po)(X,)=X,+ [X, V] holds by (1). Then,
by Lemma 2, it follows immediately that f(apo Int ())y=l for any e .
Thus, (**) is verified and the proof is completed.

3. Remarks. 1. In our theorem, the assumption that 15 seems
to be unnecessary and the integer N could be determined explicitly. But to
remove the assumption and to determine N would require rather com-
plicated calculations. We have not carried out these, as they do not seem
to be so important at present.

2. If we replace by the free pro-/ group, of rank 2, our theorem
holds. (In this case, the image of "" is GL (r, Z).) The proof goes sim-
ilarly (and more simply).
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