73. Indistinguishability of Conjugacy Classes of the Pro-l Mapping Class Group

By Mamoru Asada
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. a., Sept. 12, 1988)

Introduction. Let l be a fixed prime number and $\pi^{(\theta)}$ denote the pro- l completion of the topological fundamental group of a compact Riemann surface of genus $g \geq 2$. So, we have

$$
\pi^{(g)}=F / N
$$

where F is the free pro-l group of rank $2 g$ generated by $x_{1}, \cdots, x_{2 g}$ and N is the closed normal subgroup of F which is normally generated by $\left[x_{1}, x_{g+1}\right] \cdots\left[x_{g}, x_{2 g}\right]$, $[$,$] being the commutator ; [x, y]=x y x^{-1} y^{-1}(x, y \in F)$. We denote by Γ_{g} the outer automorphism group of $\pi^{(g)}$ and call it the pro- l mapping class group. Let

$$
\lambda: \Gamma_{g} \longrightarrow \operatorname{GSp}\left(2 g, Z_{l}\right)
$$

be the canonical homomorphism induced by the action of Γ_{g} on $\pi^{(g)} /\left[\pi^{(g)}, \pi^{(g)}\right]$ (cf. Asada-Kaneko [2, §2]). We treat the case $g=2$. Then, our result is the following

Theorem. Assume that $l \geq 5$. Then, there exists an integer $N \geq 1$ such that the following statement holds:

If $A \in \operatorname{GSp}\left(4, Z_{l}\right)$ satisfies the condition $A \equiv 1_{4} \bmod l^{N}, \lambda^{-1}\left(C_{4}\right)$ contains more than one Γ_{2}-conjugacy class. Here, C_{A} denotes the $\operatorname{GSp}\left(4, \boldsymbol{Z}_{l}\right)$-conjugacy class containing A.

In our previous paper $[2, \S 6]$, we have proved this "indistinguishability of conjugacy class" under the assumption that $g \geq 3$. The method adopted there is the "calculations modulo $\pi^{(g)}(3)$ ", which does not seem to work in case $g=2$. $\left(\left\{\pi^{(g)}(k)\right\}_{k \geq 1}\right.$ denotes, as usual, the descending central series of $\pi^{(g)}$.) So, to prove the above theorem, we use the method "calculations modulo $\pi^{(g)}(4)$ ". Although this requires rather complicated calculations, it is carried out by using the "Lie algebra" of the nilpotent pro-l group $\pi^{(g)} / \pi^{(g)}(4)$.

For those results on the indistinguishability of conjugacy class of the pro-l braid group and the motivation of these studies, see Ihara [3], [4], Kaneko [5].
§ 1. Preliminaries for proving theorem. To prove Theorem, we need some preliminaries. As before, let $\pi\left(=\pi^{(2)}\right)$ denote the pro-l completion of the topological fundamental group of a compact Riemann surface of genus 2 and $\tilde{\Gamma}$ denote the automorphism group of π. For an automorphism ρ of π, we put

$$
s_{i}(\rho)=x_{i}^{\rho} x_{i}^{-1} \quad(1 \leq i \leq 4) .
$$

Lemma 1. There exists an automorphism ρ_{0} of π such that

$$
\begin{cases}s_{1}\left(\rho_{0}\right) \equiv s_{2}\left(\rho_{0}\right) \equiv 1 & \bmod \pi(4) \tag{1}\\ s_{3}\left(\rho_{0}\right) \equiv\left[\left[x_{1}, x_{2}\right], x_{2}\right] & \bmod \pi(4), \\ s_{4}\left(\rho_{0}\right) \equiv\left[x_{1},\left[x_{1}, x_{2}\right]\right] & \bmod \pi(4)\end{cases}
$$

Proof. This follows from our previous result [2, Theorem 1]. We use the same notations as in [2]. Put $s=\left(s_{i} \bmod \pi(4)\right)_{1 \leq i \leq 4}$ with $s_{1}=s_{2}=1$, $s_{3}=\left[\left[x_{1}, x_{2}\right], x_{2}\right]$ and $s_{4}=\left[x_{1},\left[x_{1}, x_{2}\right]\right]$. Then, s belongs to Ker \tilde{f}_{2} (Jacobi's identity). An element ρ_{0} of $\tilde{\Gamma}$ corresponding to s via \tilde{h}_{2} satisfies the above condition.

In the rest of this section, we assume that $l \geq 5$. We use the terminologies and notations in Asada [1, § 2]. Let g denote the Lie algebra of the nilpotent pro-l group $\pi / \pi(4)$. Then, there exists a canonical isomorphism $d: \operatorname{Aut}(\pi / \pi(4)) \longrightarrow$ Autg.
An inner automorphism of π induces that of $\pi / \pi(4)$, hence it acts naturally on g. Our next task is to study this action. For that purpose, we briefly recall the definition of g . Let L denote the free Lie algebra on $\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ over Z_{l} and $L^{(j)}$ denote its homogeneous of degree j component ($j \geq 1$); $L=\oplus_{j \geq 1} L^{(j)}$. Then, the set $\prod_{j \geq 1} L^{(j)} \otimes_{Z_{l}} \boldsymbol{Q}_{l}$ has a natural structure of Lie algebra over \boldsymbol{Q}_{l}. We define the Lie algebra \mathfrak{Z} over \boldsymbol{Z}_{l} by

$$
\mathfrak{Z}=\left\{a=\left(a_{j}\right)_{j \geq 1} \in \prod_{j \geq 1} L^{(j)} \bigotimes_{Z_{l}} \boldsymbol{Q}_{l} \mid a_{j} \in L^{(j)}(1 \leq j \leq 3)\right\} .
$$

Furthermore, the ideals $\mathfrak{R}_{k}(2 \leq k \leq 4)$ of \mathbb{R} are defined by

$$
\mathfrak{Z}_{k}=\left\{a \in \mathbb{R} \mid a_{j}=0(1 \leq j \leq k-1)\right\} .
$$

Then, we have

$$
\mathfrak{g}=\mathfrak{R} / \mathfrak{R},
$$

where \mathfrak{R} is the ideal of \mathfrak{R} containing \mathfrak{R}_{4} such that \Re / \mathfrak{R}_{4} is, as an ideal of $\mathfrak{R} / \mathfrak{R}_{4}$, generated by

$$
\begin{aligned}
\log \{[& \left.\left.\exp X_{1}, \exp X_{3}\right]\left[\exp X_{2}, \exp X_{4}\right]\right\} \\
= & {\left[X_{1}, X_{3}\right]+\left[X_{2}, X_{4}\right]+\frac{1}{2}\left[X_{1},\left[X_{1}, X_{3}\right]\right]+\frac{1}{2}\left[X_{3},\left[X_{1}, X_{3}\right]\right] } \\
& +\frac{1}{2}\left[X_{2},\left[X_{2}, X_{4}\right]\right]+\frac{1}{2}\left[X_{4},\left[X_{2}, X_{4}\right]\right]+\text { (higher terms). }
\end{aligned}
$$

Thus, g is (canonically) identified with the quotient of $L / L(4)$ by the ideal generated by

$$
\begin{aligned}
& {\left[X_{1}, X_{3}\right]+\frac{1}{2}\left[X_{1},\left[X_{1}, X_{3}\right]\right]+\frac{1}{2}\left[X_{3},\left[X_{1}, X_{3}\right]\right]} \\
& \quad+\left[X_{2}, X_{4}\right]+\frac{1}{2}\left[X_{2},\left[X_{2}, X_{4}\right]\right]+\frac{1}{2}\left[X_{4},\left[X_{2}, X_{4}\right]\right] .
\end{aligned}
$$

Then, it is easy to give a Z_{l}-basis of \mathfrak{g}. We use the following basis $\mathfrak{B}=$ $\bigcup_{k=1}^{3} \mathfrak{B}_{k}$ (disjoint union), where

$$
\begin{aligned}
\mathfrak{B}_{1}= & \left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}, \\
\mathfrak{B}_{2}= & \left\{V_{1}=\left[X_{1}, X_{2}\right], V_{2}=\left[X_{1}, X_{3}\right], V_{3}=\left[X_{1}, X_{4}\right], V_{4}=\left[X_{2}, X_{3}\right], V_{5}=\left[X_{3}, X_{4}\right]\right\}, \\
\mathfrak{B}_{3}= & \left\{\left[X_{1}, V_{i}\right](1 \leq i \leq 3),\left[X_{2}, V_{i}\right](1 \leq i \leq 4),\left[X_{3}, V_{i}\right](1 \leq i \leq 5),\right. \\
& \left.\quad\left[X_{4}, V_{i}\right](2 \leq i \leq 5)\right\} .
\end{aligned}
$$

The canonical image of \mathfrak{B}_{k} in $\mathfrak{g}(k) / \mathfrak{g}(k+1)$ gives a Z_{l}-basis of $\mathfrak{g}(k) / \mathfrak{g}(k+1)$.
Let T be any element of g and $\operatorname{Int}(t)$ be the inner automorphism of $\pi / \pi(4)$ induced by $t=\exp T$ and $\operatorname{Int}(t)_{*}$ be the automorphism of g induced by Int (t). By a well-known formula

$$
\left(\exp z_{1}\right)\left(\exp z_{2}\right)\left(\exp z_{1}\right)^{-1}=\exp \left\{\sum_{n=0}^{\infty} \frac{1}{n!}\left(\operatorname{ad} z_{1}\right)^{n}\left(z_{2}\right)\right\}
$$

(an identity in $\boldsymbol{Q}\left[\left[z_{1}, z_{2}\right]\right]_{\text {non-commutative }}$), we have

$$
\operatorname{Int}(t)_{*}(X)=X+[T, X]+\frac{1}{2}[T,[T, X]] \quad X \in \mathfrak{g}
$$

Put

$$
T=\sum_{i=1}^{4} p_{i} X_{i}+\sum_{j=1}^{5} q_{j} V_{j}+W
$$

with $p_{i}, q_{j} \in Z_{l}(1 \leq i \leq 4,1 \leq j \leq 5)$ and $W \in \mathfrak{g}(3)$. By easy calculations, we have

Lemma 2. For $X=X_{4}$, we have

$$
\begin{aligned}
\operatorname{Int}(t)_{*}\left(X_{4}\right)= & X_{4}-p_{2} V_{2}+p_{1} V_{3}+p_{3} V_{5}-\left(\frac{1}{2} p_{2}+q_{1}+\frac{1}{2} p_{1} p_{2}\right)\left[X_{1}, V_{2}\right] \\
& +\frac{1}{2} p_{1}^{2}\left[X_{1}, V_{3}\right]+\left(\frac{1}{2} p_{2}-\frac{1}{2} p_{2}^{2}\right)\left[X_{2}, V_{2}\right]+\left(\frac{1}{2} p_{1} p_{2}-q_{1}\right)\left[X_{2}, V_{3}\right] \\
& -\left(\frac{1}{2} p_{2}+p_{2} p_{3}\right)\left[X_{3}, V_{2}\right]+p_{1} p_{3}\left[X_{3}, V_{3}\right]+\frac{1}{2} p_{3}^{2}\left[X_{3}, V_{5}\right] \\
& +\left(\frac{1}{2} p_{2}-q_{2}-\frac{1}{2} p_{1} p_{3}-\frac{1}{2} p_{2} p_{4}\right)\left[X_{4}, V_{2}\right] \\
& +\left(\frac{1}{2} p_{1} p_{4}-q_{3}\right)\left[X_{4}, V_{3}\right]-\left(\frac{1}{2} p_{2} p_{3}+q_{4}\right)\left[X_{4}, V_{4}\right] \\
& +\left(\frac{1}{2} p_{3} p_{4}-q_{5}\right)\left[X_{4}, V_{5}\right] .
\end{aligned}
$$

Let

$$
\tilde{\lambda}: \tilde{\Gamma} \longrightarrow \operatorname{GSp}\left(4, Z_{l}\right)
$$

be the canonical homomorphism induced by the action of $\tilde{\Gamma}$ on $\pi /[\pi, \pi]$ (cf. $[2, \S 1])$. Let f be the composition of the two homomorphisms

$$
\tilde{\Gamma} \longrightarrow \operatorname{Aut}(\pi / \pi(4)) \xrightarrow{d} \text { Aut g. }
$$

Furthermore, let \bar{f} denote the composition of f with the canonical homomorphism

$$
\text { Autg } \longrightarrow \operatorname{Aut}\left(g{\underset{Z}{Z_{l}}}_{\otimes}^{F_{l}}\right) \text {. }
$$

Lemma 3. There exists an integer $N \geq 1$ such that the following statement holds:
(*) If $A \in \operatorname{GSp}\left(4, Z_{l}\right)$ satisfies the condition $A \equiv 1_{4} \bmod l^{N}$, there exists an element σ of $\tilde{\Gamma}$ such that

$$
\left\{\begin{array}{l}
\tilde{\lambda}(\sigma)=A, \tag{2}\\
\bar{f}(\sigma)=1 .
\end{array}\right.
$$

Proof. Put $\Delta=\operatorname{Ker} \bar{f}$ and $\tilde{\Gamma}(1)=\operatorname{Ker} \tilde{\lambda} . \quad$ As Aut $\left(g \otimes_{Z_{l}} F_{l}\right)$ is a finite
group, Δ is of finite index in $\tilde{\Gamma}$. So, $\Delta \tilde{\Gamma}(1)$ is an index finite normal subgroup of $\tilde{\Gamma}$ containing $\tilde{\Gamma}(1)$. Thus, $\Delta \tilde{\Gamma}(1)$ contains a subgroup

$$
\tilde{\lambda}^{-1}\left(\left\{A \in \operatorname{GSp}\left(4, Z_{l}\right) \mid A \equiv 1_{4} \bmod l^{N}\right\}\right)
$$

for some $N \geq 1$. From this, the lemma follows immediately.
§2. Proof of Theorem. Let $N \geq 1$ be an integer such that (*) in Lemma 3 holds and assume that $A \in \operatorname{GSp}\left(4, Z_{l}\right)$ satisfy $A \equiv 1_{4} \bmod l^{N}$. Let ρ_{0} and σ be elements of $\tilde{\Gamma}$ satisfying (1) and (2) respectively. Then, $\tilde{\lambda}(\sigma)=$ $\tilde{\lambda}\left(\sigma \rho_{0}\right)=A$. It suffices to show that
(**) $\quad \tau \sigma \tau^{-1} \neq \sigma \rho_{0} \operatorname{Int}(\tilde{t}) \quad$ for any $\tau \in \tilde{\Gamma}$ and any $\tilde{t} \in \pi$.
To see this, we use the homomorphism \bar{f}. By (2), we have $\bar{f}\left(\tau \sigma \tau^{-1}\right)=1$ for any $\tau \in \tilde{\Gamma}$. On the other hand, $f\left(\rho_{0}\right)\left(X_{4}\right)=X_{4}+\left[X_{1}, V_{1}\right]$ holds by (1). Then, by Lemma 2 , it follows immediately that $\bar{f}\left(\sigma \rho_{0} \operatorname{Int}(\tilde{t})\right) \neq 1$ for any $\tilde{t} \in \pi$. Thus, (**) is verified and the proof is completed.
§3. Remarks. 1. In our theorem, the assumption that $l \geq 5$ seems to be unnecessary and the integer N could be determined explicitly. But to remove the assumption and to determine N would require rather complicated calculations. We have not carried out these, as they do not seem to be so important at present.
2. If we replace π by the free pro-l group of rank 2, our theorem holds. (In this case, the image of " λ " is GL $\left(r, Z_{l}\right)$.) The proof goes similarly (and more simply).

References

[1] M. Asada: An analogue of the Levi decomposition of the automorphism group of certain nilpotent pro-l group (1988) (preprint).
[2] M. Asada and M. Kaneko: On the automorphism group of some pro-l fundamental groups. Advanced Studies in Pure Math., vol. 12, pp. 137-159 (1987).
[3] Y. Ihara: Profinite braid groups, Galois representations and complex multiplications. Ann. of Math., 123, 43-106 (1986).
[4] -: Some problems on three point ramifications and associated large Galois representations. Advanced Studies in Pure Math., vol. 12, pp. 173-188 (1987).
[5] M. Kaneko: On conjugacy classes of the pro-l braid group of degree 2. Proc. Japan Acad., 62A, 274-277 (1986).

