64. A Generalization of the Hille-Yosida Theorem

By Isao MIYADERA
Department of Mathematics, Waseda University

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1988)

1. Introduction. Let X be a Banach space, and let B(X) be the set of all bounded linear operators from X into itself. Arendt [1] introduced the notion of integrated semigroups and obtained the following generalization of the Hille-Yosida theorem: A closed linear operator A is the generator of a once integrated semigroup $\{U(t); t \ge 0\}$ on X satisfying $\|U(t+h) - U(t)\| \le Mhe^{a(t+h)}$ for $t, h \ge 0$ if and only if $(a, \infty) \subset \rho(A)$ and $\|(\lambda - A)^{-m}\| \le M/(\lambda - a)^m$ for $\lambda > a$ and $m \ge 1$, where M > 0 and $a \ge 0$ are constants. Moreover, the part of A in $\overline{D(A)}$ is the generator of a (C_0) -semigroup on $\overline{D(A)}$.

Let $C \in B(X)$ be injective. In this paper we introduce the notion of integrated C-semigroups and prove the following theorems.

Theorem 1. An operator A is the generator of an integrated C-semi-group $\{U(t); t \ge 0\}$ on X satisfying

- (1.1) $||U(t+h)-U(t)|| \le Mhe^{a(t+h)}$ for $t,h\ge 0$, where M>0 and $a\ge 0$ are constants, if and only if A satisfies the following properties (A1)-(A3) and it is maximal with respect to (A1)-(A3):
- (A1) A is a closed linear operator and λA is injective for $\lambda > a$;
- (A2) $D((\lambda-A)^{-m})\supset R(C)$ and $\|(\lambda-A)^{-m}C\|\leq M/(\lambda-a)^m$ for $\lambda>a$ and $m\geq 1$;
- (A3) $Cx \in D(A)$ and ACx = CAx for $x \in D(A)$.

Theorem 2. If A satisfies the equivalent conditions of Theorem 1, then the part of A in $\overline{D(A)}$ is the generator of a C_1 -semigroup $\{S_1(t); t \ge 0\}$ on $\overline{D(A)}$ satisfying $||S_1(t)x|| \le Me^{at} ||x||$ for $x \in \overline{D(A)}$ and $t \ge 0$, where $C_1 = C|_{\overline{D(A)}}$.

The above-mentioned Arendt's results are the case of C=I (the identity) in Theorems 1 and 2. As direct consequences of Theorems 1 and 2 we have:

Corollary 1. If A satisfies (A1)-(A3) in Theorem 1 then $C^{-1}AC$ is the generator of an integrated C-semigroup $\{U(t); t \geq 0\}$ on X satisfying $\|U(t+h)-U(t)\| \leq Mhe^{a(t+h)}$ for $t,h\geq 0$.

Corollary 2 ([2, Corollary 13.2]). Suppose $\overline{R(C)} = X$. A is the generator of a C-semigroup $\{S(t); t \geq 0\}$ on X satisfying $||S(t)|| \leq Me^{at}$ for $t \geq 0$ if and only if A is maximal with respect to (A2), (A3) in Theorem 1 and "(A1') A is a closed linear operator with $\overline{D(A)} = X$ and λ -A is injective for $\lambda > a$ ".

- 2. Integrated C-semigroups. Let $C \in B(X)$ be injective. A family $\{U(t); t>0\}$ in B(X) is called an *integrated C-semigroup on X*, if
- (2.1) $U(\cdot)x:[0,\infty)\to X$ is continuous for $x\in X$,
- (2.2) U(t)x=0 for all t>0 implies x=0,
- (2.3) there exist K>0 and $b\geq 0$ such that $||U(t)||\leq Ke^{bt}$ for $t\geq 0$,
- (2.4) U(0)=0 (the zero operator) and U(t)C=CU(t) for t>0,

$$(2.5) \quad U(t)U(s)x = \int_{t}^{s+t} U(r)Cx \, dr - \int_{0}^{s} U(r)Cx \, dr \quad \text{for } x \in X \text{ and } t, s \ge 0.$$

Let $\{U(t); t \ge 0\}$ be an integrated C-semigroup on X. For $\lambda > \omega_0 \equiv$ $\max \{0, \overline{\lim}_{t\to\infty} (\log ||U(t)||)/t\}$ we define $L(\lambda) \in B(X)$ by

$$L(\lambda)x = \int_0^\infty \lambda e^{-\lambda t} U(t)x \ dt$$
 for $x \in X$.

Clearly $L(\lambda)C = CL(\lambda)$ for $\lambda > \omega_0$, and a simple computation yields

$$L(\mu)C - L(\lambda)C = (\lambda - \mu)L(\lambda)L(\mu)$$
 for $\lambda, \mu > \omega_0$.

It follows from this that $L(\mu)$ is injective for $\mu > \omega_0$ and the following holds:

(2.6)
$$\{x \in X \; ; \; Cx \in R(L(\lambda))\} = \{x \in X \; ; \; Cx \in R(L(\mu))\} \quad (\equiv D(A)),$$

$$(\lambda - L(\lambda)^{-1}C)x = (\mu - L(\mu)^{-1}C)x \quad \text{for } \lambda, \mu > \omega_0 \text{ and } x \in D(A).$$

Therefore the closed linear operator A defined by

$$Ax = (\lambda - L(\lambda)^{-1}C)x$$
 for $x \in D(A) \equiv \{x \in X ; Cx \in R(L(\lambda))\}$

is independent of $\lambda > \omega_0$. The operator A is called the *generator* of the integrated C-semigroup $\{U(t); t \ge 0\}$. The generator has the following

(2.7)
$$Cx \in D(A)$$
 and $ACx = CAx$ for $x \in D(A)$,

(2.8)
$$\begin{array}{ccc} (\lambda - A)L(\lambda)x = Cx & \text{for } x \in X \text{ and } \lambda > \omega_0 \\ L(\lambda)(\lambda - A)x = Cx & \text{for } x \in D(A) \text{ and } \lambda > \omega_0. \end{array}$$

Example. Let Z be the generator of a C-semigroup $\{S(t); t \ge 0\}$ on X with $||S(t)|| < Me^{at}$ for t > 0, where M > 0 and a > 0 are constants. (We refer to [2, 4] for C-semigroups.) Define $U(t) \in B(X)$ for $t \ge 0$ by

$$U(t)x = \int_0^t S(s)x \ ds$$
 for $x \in X$.

Then $\{U(t); t \ge 0\}$ is an integrated C-semigroup on X whose generator is Z, and $||U(t+h)-U(t)|| \le Mhe^{a(t+h)}$ for $t, h \ge 0$.

Lemma. Let A be the generator of an integrated C-semigroup $\{U(t);$ $t \ge 0$ on X. Then for $t \ge 0$ we have

$$(2.9) \quad AU(t)x = U(t)Ax \ \ and \ \ U(t)x = tCx + \int_0^t U(s)Ax \ ds \qquad \quad for \ x \in D(A),$$

$$(2.9) \quad AU(t)x = U(t)Ax \ and \ U(t)x = tCx + \int_0^t U(s)Ax \ ds \qquad for \ x \in D(A),$$

$$(2.10) \quad \int_0^t U(s)x \ ds \in D(A) \ and \ U(t)x = tCx + A \int_0^t U(s)x \ ds \qquad for \ x \in X.$$

Moreover, if $\{U(t); t \ge 0\}$ satisfies (1.1) then A satisfies (A1)-(A3).

Proof. By (2.8), $\lambda - A$ is injective and

$$(\lambda - A)^{-1}Cx = \lambda \int_0^\infty e^{-\lambda t} U(t)x \, dt$$
 for $\lambda > \omega_0$ and $x \in X$.

Set $f(\lambda, x) = \lambda^{-1}(\lambda - A)^{-1}Cx$ for $x \in X$ and $\lambda > \omega_0$. The Post-Widder inversion formula [3, Theorem 6.3.5] implies

(2.11) $U(t)x = \lim_{m \to \infty} ((-1)^m/m!)(m/t)^{m+1} f^{(m)}(m/t, x)$ for $x \in X$ and t > 0.

Let $x \in D(A)$. Then $f(\lambda, Ax) = A f(\lambda, x)$ by (2.7), which implies $f^{(m)}(\lambda, Ax)$ $=Af^{(m)}(\lambda,x)$ for $\lambda>\omega_0$ and $m\geq 0$. Combining this with (2.11) we see that $U(t)x \in D(A)$ and AU(t)x = U(t)Ax for t>0. Similarly as in the proof of [1, Proposition 3.3], we obtain the latter half of (2.9) and (2.10).

Suppose that $\{U(t); t \ge 0\}$ satisfies (1.1). Since $a \ge \omega_0$ by $||U(t)|| \le Mte^{at}$, A satisfies (A1), (A3) (=(2.7)) and

(2.12)
$$(\lambda - A)^{-1}Cx = \int_0^\infty \lambda e^{-\lambda t} U(t)x \, dt \quad \text{for } x \in X \text{ and } \lambda > a.$$

Moreover, by induction on m we obtain for $x \in X$, $\lambda > \alpha$ and $m \ge 2$ $(\lambda - A)^{-m}Cx = (C^{-1}L(\lambda))^mCx$

$$(2.13) \qquad = \int_0^\infty \cdots \int_0^\infty \lambda e^{-\lambda(t_1 + \cdots + t_m)} (U(t_1 + \cdots + t_m)x - U(t_2 + \cdots + t_m)x) dt_m \cdots dt_1.$$

Let $x \in X$, $x^* \in X^*$ (the dual of X), $\lambda > a$ and $m \ge 1$. By (1.1), $x^*(U(t)x)$ is differentiable and $|(d/dt)x^*(U(t)x)| \le Me^{at} ||x^*|| ||x||$ for a.e. t. Therefore

$$|x^*(U(t+h)x-U(t)x)|$$

$$= \left| \int_t^{t+h} (d/ds) x^*(U(s)x) ds \right| \le M \|x^*\| \|x\| \int_0^h e^{a(t+s)} ds \qquad ext{for } t,h \ge 0.$$

Combining this with (2.13) and (2.12) we obtain (A2).

Q.E.D.

3. Proof of Theorems.

Proof of Theorem 1. (Necessity) Let A be the generator of an integrated C-semigroup $\{U(t): t \ge 0\}$ on X satisfying (1.1). A satisfies (A1)–(A3) by Lemma. Suppose that $\mathfrak A$ satisfies (A1)–(A3) with A replaced by $\mathfrak A$ and $\mathfrak A \supset A$. To show $\mathfrak A = A$, let $x \in D(\mathfrak A)$ and set $f(\lambda, z) = \lambda^{-1}(\lambda - A)^{-1}Cz$ for $z \in X$ and $\lambda > \omega_0$. For $\lambda > \omega_0$, $f(\lambda, \mathfrak A x) = \lambda^{-1}(\lambda - \mathfrak A)^{-1}C\mathfrak A x = \mathfrak A \lambda^{-1}(\lambda - \mathfrak A)^{-1}Cx = \mathfrak A f(\lambda, x)$ which implies $\mathfrak A f^{(m)}(\lambda, x) = f^{(m)}(\lambda, \mathfrak A x)$ for $m \ge 0$. Combining this with (2.11) we see that $U(t)x \in D(\mathfrak A)$ and $\mathfrak A U(t)x = U(t)\mathfrak A x$ for $t \ge 0$. Hence

$$Cx\!=\!(\lambda-\mathfrak{A})\int_0^\infty \lambda e^{-\lambda t}U(t)x\ dt =\!\int_0^\infty \lambda e^{-\lambda t}U(t)(\lambda-\mathfrak{A})x\ dt =\!L(\lambda)(\lambda-\mathfrak{A})x$$

for $\lambda > \omega_0$, which implies $x \in D(A)$. Thus $\mathfrak{A} = A$.

(Sufficiency) For $x \in X$ and $m \ge 1$,

$$R(\lambda)^m Cx = \sum_{l=m-1}^{\infty} {}_l C_{m-1} (\mu - \lambda)^{l-m+1} R(\mu)^{l+1} Cx$$
 for $\mu > \lambda > a$,

where $R(\lambda) = (\lambda - A)^{-1}$, which implies $(d/d\lambda)R(\lambda)^mCx = -mR(\lambda)^{m+1}Cx$ for $\lambda > a$. Now, by induction on m we obtain that for $x \in X$, $\lambda > a$ and $m \ge 1$,

$$(3.1) (d/d\lambda)^m (\lambda - A)^{-1} Cx = m! (-1)^m (\lambda - A)^{-(m+1)} Cx.$$

Hence by (A2), $\|(d/d\lambda)^m(\lambda-A)^{-1}Cx\| \le m! M \|x\|/(\lambda-a)^{m+1}$ for $x \in X$, $\lambda > a$ and $m \ge 0$. By [1, Corollary 1.2] there exists a family $\{U(t); t \ge 0\}$ in B(X) such that U(0) = 0, $\|U(t+h) - U(t)\| \le Mhe^{a(t+h)}$ for $t, h \ge 0$ and

(3.2)
$$(\lambda - A)^{-1}Cx = \int_0^\infty \lambda e^{-\lambda t} U(t)x \, dt \quad \text{for } x \in X \text{ and } \lambda > a.$$

Clearly $\{U(t); t \ge 0\}$ satisfies (2.1)–(2.3). Since (A3) is equivalent to (A3') $(\lambda - A)^{-1}Cx = C(\lambda - A)^{-1}x$ for $\lambda > a$ and $x \in D((\lambda - A)^{-1})$, it follows from (3.2) that

$$\int_0^\infty \lambda e^{-\lambda t} U(t) Cx \, dt = \int_0^\infty \lambda e^{-\lambda t} CU(t) x \, dt \qquad \text{for } x \in X \text{ and } \lambda > a.$$

By the uniqueness theorem for Laplace transforms we see that U(t)C = CU(t) for $t \ge 0$, i.e., (2.4) holds. Since $(\lambda - A)^{-1}Cx - (\mu - A)^{-1}Cx = (\mu - \lambda)(\lambda - A)^{-1}(\mu - A)^{-1}Cx$ for $x \in X$ and $\lambda, \mu > a$, similarly as in the proof of [1, Theorem 3.1] we see that (2.5) holds.

Let \tilde{A} be the generator of $\{U(t); t \ge 0\}$. To see $A \subset \tilde{A}$, let $x \in D(A)$ and put $(\lambda - A)x = y$, where $\lambda > \alpha \ge \omega_0$. By (A3') and (3.2) we see that

$$Cx = (\lambda - A)^{-1}Cy = \int_0^\infty \lambda e^{-\lambda t} U(t)y \ dt = L(\lambda)y.$$

Hence $x \in D(\tilde{A})$ and $\tilde{A}x = \lambda x - L(\lambda)^{-1}Cx = Ax$. This means $A \subset \tilde{A}$. Hence we obtain $A = \tilde{A}$, because \tilde{A} satisfies (A1)-(A3) with A replaced by \tilde{A} from Lemma and A is maximal with respect to the properties (A1)-(A3). Q.E.D.

Proof of Theorem 2. As in the proof of [1, Corollary 4.2] we see that $U(\cdot)x \in C^1([0,\infty),X)$ and $(d/dt)U(t)x \in \overline{D(A)}$ for $x \in \overline{D(A)}$ and $t \ge 0$.

Now, for $t \ge 0$, define $S_1(t): \overline{D(A)} \to \overline{D(A)}$ by $S_1(t)x = (d/dt)U(t)x$ for $x \in \overline{D(A)}$. Then $\{S_1(t); t \ge 0\}$ is a C_1 -semigroup on $\overline{D(A)}$ satisfying (3.3)–(3.6), where $C_1 = C|_{\overline{D(A)}}$;

- (3.3) $||S_1(t)x|| < Me^{at} ||x||$ for $x \in \overline{D(A)}$,
- (3.4) $||S_1(t+h)x-S_1(t)x|| \le Mhe^{a(t+h)} ||Ax||$ for $x \in D(A)$ and $t, h \ge 0$,
- $(3.5) \quad S_1(t)x = C_1x + A_1 \int_0^t S_1(s)x \, ds \qquad \qquad \text{for } x \in \overline{D(A)} \text{ and } t \ge 0,$
- (3.6) $(\lambda A_1) \int_0^\infty e^{-\lambda t} S_1(t) x \, dt = C_1 x$ for $x \in \overline{D(A)}$ and $\lambda > a$.

In fact, (3.3)-(3.5) follow from (1.1), (2.9) and (2.10). Differentiating

$$U(t)U(s)x = \int_{t}^{s+t} U(r)C_{1}x dr - \int_{0}^{s} U(r)C_{1}x dr$$

with respect to s and t, we get $S_1(t)S_1(s)x = S_1(s+t)C_1x$ for $\overline{D(A)}$ and $t, s \ge 0$. Thus $\{S_1(t); t \ge 0\}$ is a C_1 -semigroup on $\overline{D(A)}$. (3.6) follows from (2.8).

Finally, let A_1 be the part of A in $\overline{D(A)}$ and let Z_1 be the generator of the C_1 -semigroup $\{S_1(t)\,;\,t\geq 0\}$ on $\overline{D(A)}$. To see $A_1=Z_1$, let $x\in D(A_1)$. $A_1x=Ax\in \overline{D(A)}$ and $AU(t)x=U(t)A_1x$ imply $S_1(t)x\in D(A_1)$ and $A_1S_1(t)x=S_1(t)A_1x$. From this and (3.6) we see that for $\lambda>a$

$$C_1 x = \int_0^\infty e^{-\lambda t} S_1(t) (\lambda - A_1) x \, dt = \mathfrak{L}_{\lambda}(\lambda - A_1) x, \quad \text{where } \mathfrak{L}_{\lambda} z = \int_0^\infty e^{-\lambda t} S_1(t) z \, dt$$

for $z \in \overline{D(A)}$ and $\lambda > a$. From the definition of generator it follows that $Z_1x \equiv (\lambda - \mathfrak{L}_{\lambda}^{-1}C_1)x = A_1x$. Thus we get $A_1 \subset Z_1$. Next, as in the proof of [4, Theorem 2.1] we have $Z_1 \subset C_1^{-1}A_1C_1$. Moreover $C_1^{-1}A_1C_1 \subset C^{-1}AC = A$, because $C^{-1}AC$ satisfies (A1)-(A3) with A replaced by $C^{-1}AC$ and $A \subset C^{-1}AC$ by (A3). This implies $C_1^{-1}A_1C_1 \subset A_1$. Hence $Z_1 \subset A_1$. Q.E.D.

Proof of Corollary 1. By the maximal principle there is an $\tilde{A} \supset A$ such that \tilde{A} is maximal with respect to (A1)–(A3). We see that $\tilde{A} \subset C^{-1}AC$ and $C^{-1}AC$ satisfies (A1)–(A3). Therefore $C^{-1}AC = \tilde{A}$. Q.E.D.

Corollary 2 follows from [2, Proposition 7], Example and Theorems 1, 2. Remark. Let A satisfy (A1)–(A3). A is maximal with respect to the properties (A1)–(A3) if and only if $A = C^{-1}AC$.

References

- [1] W. Arendt: Israel J. Math., 59, 327-352 (1987).
- [2] E. B. Davies and M. M. Pang: Proc. London Math. Soc., 55, 181-208 (1987).
- [3] E. Hille and R. S. Phillips: Amer. Math. Soc. Colloq. Publ., vol. 31 (1957).
- [4] N. Tanaka and I. Miyadera: Exponentially bounded C-semigroups and integrated semigroups (preprint).