27. Spectral Properties of the Operator Associated with a Retarded Functional Differential Equation in Hilbert Space

By Jin-Mun JEONG^{*})

Department of Mathematics, Osaka University

(Communicated by Kôsaku Yosida, M. J. A., April 12, 1989)

In [4] the fundamental result on the structural operator for the linear retarded functional differential equation

(1)
$$du(t)/dt = A_0 u(t) + A_1 u(t-h) + \int_{-h}^{0} a(s) A_2 u(t+s) ds$$

in a Hilbert space H was established. Here, $-A_0$ is the operator associated with a bounded sesquilinear form a(u, v) defined in $V \times V$ and satisfying Gårding's inequality

Re $a(u, u) \ge c ||u||^2$, $c \ge 0$,

where V is a Hilbert space densely and continuously imbedded in H and || || is the norm of V. It is known that A_0 generates an analytic semigroup in both of H and V*. It is assumed that A_1 and A_2 are bounded linear operators from V to V* and $A_iA_0^{-1}$, i=1, 2, are bounded also in H. The real valued function a(s) is assumed to be Hölder continuous in [-h, 0].

Let $S(t): M = H \times L^2(-h, 0; V) \rightarrow M$ be the solution semigroup for (1) considered as an equation in V^* : for $g = (g^0, g^1) \in M$

$$S(t)g = (u(t;g), \quad u(t+\cdot;g)),$$

where u(t; g) is the mild solution of (1) satisfying the initial conditions (2) $u(0; g) = g^0, \quad u(s; g) = g^1(s)$ for $s \in [-h, 0)$.

In this paper we investigate the spectral properties of the infinitesimal generator A of S(t) in the special case where $A_1 = \gamma A_0$ with some real constant γ , $A_2 = A_0$ and the imbedding $V \subset H$ is compact. Hence, in what follows throughout this paper we consider the equation

(3)
$$du(t)/dt = A_0 u(t) + \gamma A_0 u(t-h) + \int_{-h}^{0} a(s) A_0 u(t+s) ds$$

with A_0 , γ , a satisfying the assumptions stated above.

According to the Riesz-Schauder theory A_0 has a discrete spectrum: $\sigma(A_0) = \{\mu_j: j=1, 2, \dots\}$. Set

(4)
$$m(\lambda) = 1 + \gamma e^{-\lambda h} + \int_{-h}^{0} e^{\lambda s} a(s) ds.$$

It is clear that $m(\lambda)$ is an entire function and (5) $m(\lambda) \rightarrow 1$ as $\operatorname{Re} \lambda \rightarrow +\infty$.

The following lemmas are proved as Theorems 6.1 and 7.2 of

^{*)} Graduate student from Korea.

S. Nakagiri [2]. Lemma 1. $(\lambda - A)f = \phi$ if ond anly if $\Delta(\lambda)f^{0} = \phi^{0} + \int_{-\hbar}^{0} e^{-\lambda(\hbar + \tau)} \gamma A_{0}\phi^{1}(\tau) d\tau + \int_{-\hbar}^{0} a(s) \int_{s}^{0} e^{\lambda(s - \tau)} A_{0}\phi^{1}(\tau) d\tau ds,$ $f^{1}(s) = e^{\lambda s} f^{0} + \int_{s}^{0} e^{\lambda(s - \tau)} \phi^{1}(\tau) d\tau,$

where $\Delta(\lambda) = \lambda - m(\lambda)A_0$.

Lemma 2. For
$$l=1, 2, \cdots$$

$$\operatorname{Ker}(\lambda - A)^{\iota} = \left\{ \left(\phi_{0}^{0}, e^{\lambda s} \sum_{i=0}^{l-1} (-s)^{i} \phi_{i}^{0} / i! \right) : \sum_{i=j-1}^{l-1} (-1)^{i-j} \Delta^{(i-j+1)}(\lambda) \phi_{i}^{0} / (i-j+1)! = 0, \ j=1, \ \cdots, \ l \right\}.$$

Theorem 1. Let $\sigma(A)$ be the spectrum of the infinitesimal generator A of S(t). Then

$$\sigma(A) = \sigma_e(A) \cup \sigma_p(A),$$

where $\sigma_e(A) = \{\lambda : m(\lambda) = 0\}$ and $\sigma_p(A) = \{\lambda : m(\lambda) \neq 0, \lambda/m(\lambda) \in \sigma(A_0)\}$. Each nonzero point of $\sigma_e(A)$ is not an eigenvalue of A and is a cluster point of $\sigma(A)$. $\sigma_p(A)$ consists only of discrete eigenvalues.

Suppose m(0)=0. Then, 0 is an eigenvalue of A with infinite multiplicity. 0 is an isolated point of $\sigma(A)$ if it is a simple zero of $m(\lambda)$, and is a cluster point of $\sigma(A)$ if it is a multiple zero of $m(\lambda)$.

Outline of the proof. With the aid of the Riesz-Schauder theory and Lemma 1 it is not difficult to verify that

 $\rho(A) = \{ \lambda : m(\lambda) \neq 0, \lambda/m(\lambda) \in \rho(A_0) \}.$

Suppose $\lambda_0 \neq 0$ is a zero of $m(\lambda)$ of the k-th order. Then, there exists a function $h(\lambda)$ which is holomorphic in a neighbourhood of λ_0 such that $m(\lambda)/\lambda = (\lambda - \lambda_0)^k h(\lambda)^k$. Applying the inverse function theorem to $(\lambda - \lambda_0) h(\lambda)$ and noting $\mu_j \to \infty$ we see that for sufficiently large j there exists a complex number λ_j such that $(\lambda_j - \lambda_0) h(\lambda_j) = \mu_j^{-1/k}$ and $\lambda_j \to \lambda_0$. Then, $\lambda_j/m(\lambda_j) = \mu_j \in \sigma(A_0)$, and hence λ_0 is a cluster point of $\sigma(A)$.

Next, suppose that $m(\lambda_0) \neq 0$, $\lambda_0/m(\lambda_0) \in \sigma(A_0)$. If there exists a sequence $\{\lambda_j\}$ such that $\lambda_0 \neq \lambda_j \in \sigma(A)$, $m(\lambda_j) \neq 0$ and $\lambda_j \rightarrow \lambda_0$, then $\lambda_j/m(\lambda_j) \rightarrow \lambda_0/m(\lambda_0)$, $\lambda_j/m(\lambda_j) \in \sigma(A_0)$. Since $\sigma(A_0)$ consists only of isolated points, we have $\lambda_j/m(\lambda_j) = \lambda_0/m(\lambda_0)$ for sufficiently large j. In view of the theorem of identity we have $\lambda/m(\lambda) \equiv \lambda_0/m(\lambda_0)$ which contradicts (5).

Theorem 2. Suppose that $m(0) \neq 0$, $\gamma \neq 0$ and the generalized eigenvectors of A_0 are complete in H. Then, the generalized eigenvectors of A are complete in M.

Outline of the proof. Let P_n be the spectral projection to the generalized eigenspace of A_0 associated with $\mu_n \in \sigma(A_0)$. Set $H_n = P_n H$ and $A_{0n} = A_0|_{H_n}$. Then, clearly $P_n V = H_n$. If we denote the solution semigroup of the equation (3) with A_{0n} in place of A_0 by $S_n(t) = \exp(tA_n)$, then the commutativity of A_0 and P_n yields

 $S_n(t) = S(t)|_{M_n}$ and $A_n = A|_{D(A_n)}$,

where $M_n = H_n \times L^2(-h, 0; H_n)$. It follows from Lemma 2 that for λ with

No. 4]

 $\lambda/m(\lambda) = \mu_n$, $(\lambda - A)^i \phi = 0$ if and only if $(\lambda - A_n)^i \phi = 0$. Thus, the assertion of the theorem follows from the corresponding result of A. Manitius ([1]: Theorems 5.1 and 5.4(ii)) in the case of a finite dimensional space.

As an application we consider the identification problems for the equation (3) (cf. Theorem 3.1 of S. Nakagiri and M. Yamamato [3]).

We denote by (3^m) the equation (3) with A_0 , γ , a replaced by A_0^m , γ^m , a^m respectively. The mild solution of (3^m) satisfying the initial conditions (2) is denoted by $u^m(t; g)$, and the solution semigroup for (3^m) by $S^m(t) = \exp(tA^m)$. We assume that A_0^m and a^m satisfy the same type of assumptions as A_0 and a. Hence, the conclusion of Theorem 1 holds also for A^m .

Let $g^i = (g^0_i, g^1_i) \in M$, $i=1, \dots, q$, be a finite set of initial values. We say that A_0 , γ , a are identifiable if $A_0 = A_0^m$, $\gamma = \gamma^m$, $a(s) \equiv a^m(s)$ follows from $u(t; g^i) \equiv u^m(t; g^i)$, $i=1, \dots, q$.

Let $\{\mu_n^m : n=1, 2, \cdots\}$ be the set of eigenvalues of A_0^m , and by $\{\psi_{n1}^0, \cdots, \psi_{nd_n}^0\}$ a base of $\operatorname{Ker}(\overline{\mu_n^m} - (A_0^m)^*)$, where $d_n = \dim \operatorname{Ker}(\mu_n^m - A_0^m)$. Let $\{\lambda_{nj}^m : j=1, 2, \cdots\}$ be the totality of the complex numbers λ satisfying $\lambda/m^m(\lambda) = \mu_n^m$. If we set $\psi_{nj}^k = (\psi_{nk}^0, \exp(\overline{\lambda_{nj}^m}s)\psi_{nk}^0)$, then $\{\psi_{nj}^k : k=1, \cdots, d_n\}$ is a base of $\operatorname{Ker}(\overline{\lambda_{nj}^m} - A_T^m)$, where A_T^m is the infinitesimal generator of the solution semigroup associated with the equation (3^m) with A_0^m replaced by its adjoint $(A_0^m)^*$.

By F^m we denote the structural operator for (3^m) and by $(,)_M$ the duality between M^* and M.

Theorem 3. Suppose that $\gamma^m \neq 0$, $m^m(0) \neq 0$ and the generalized eigenvectors of A_0^m are complete in H. If the set of initial values $\{g^1, \dots, g^q\}$ satisfies

$$\operatorname{rank}\left((F^{m}g^{i}, \psi_{nj}^{k})_{M}: \begin{array}{c} i \rightarrow 1, \cdots, q\\ k \downarrow 1, \cdots, d_{n}\right) = d_{n}$$

for each n, j, then A_0 , γ , a are identifiable.

One can prove this theorem following the proof of Proposition 3.1 and Theorem 3.1 of [3] and taking Remark 3.2 of the same paper into consideration. The only difference is to show $\sigma_e(A^m) \subset \sigma_e(A)$ and $\sigma_p(A^m) \subset \sigma_p(A)$ instead of $\sigma(A^m) \subset \sigma(A)$ to start with.

The author wishes to express his deepest appreciation to Prof. S. Nakagiri of Kobe University for his valuable remarks and suggestions and also for his constant encouragement during the preparation of this paper.

References

- A. Manitius: Completeness and F-completeness of eigenfunctions associated with retarded functional differential equations. J. Differential Equations, 35, 1-29 (1980).
- [2] S. Nakagiri: Structural properties of functional differential equations in Banach spaces. Osaka J. Math., 25, 353-398 (1988).

No. 4]

- [3] S. Nakagiri and M. Yamamoto: Identifiability of linear retarded systems in Banach spaces. Funkcial. Ekvac., 31, 315–329 (1988).
- [4] H. Tanabe: Structural operators for linear delay-differential equations in Hilbert space. Proc. Japan Acad., 64A, 265-266 (1988).