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In [4] the fundamental result on the structural operator for the
linear retarded functional differential equation

( 1 d(t)/dt=Ao(t)+Au(t--h)+ a()A(t+)d
-h

in a Hilbert space H was established. Here, --A0 is the operator
associated with a bounded sesquilinear form a(, ) defined in VV
and satisfying Ggrding’s inequality

Rea(u,u)_cllu]l2, c>O,
where V is a Hilbert space densely and continuously imbedded in H
and is the norm of V. It is known that A0 generates an analytic
semigroup in both of H and V*. It is assumed that A and A. are
bounded linear operators from V to V* and AiA1, i--1, 2, are bounded
also in H. The real valued function a(s) is assumed to be HSlder con-
tinuous in [-h, 0].

Let S(t): M--HL2(--h, 0; V)-->M be the solution semigroup for (1)
considered as an equation in V* for g---(g, g,) e M

S(t)g=(u(t; g), u(tq-. g)),
where u(t;g) is the mild solution o (1) satisfying the initial conditions
(2) u(0; g)_g0, u(s; g)--g(s) or s [--h, 0).

In this paper we investigate the spectral properties of the infini-
tesimal generator A of S(t) in the special case where A=’Ao with some
real constant ’, A.=Ao and the imbedding VH is compact. Hence,
in what ollows throughout this paper we consider the equation

( 3 ) du(t)/dt=Aou(t)+’Aou(t--h)+[a(s)Aou(t+s)ds
with A0, ’, a satisfying the assumptions stated above.

According to the Riesz-Schauder theory A0 has a discrete spectrum:
a(A0)={Z" ]--1, 2, ...}. Set

(4) m(2)=l+’e-"+[ ea(s)ds.
d-

It is clear that m(2) is an entire function and
( 5 ) m(2)--.1 as Re 2--+ c.

The following lemmas are proved as Theorems 6.1 and 7.2 of
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S. Nakagiri [2].
Lemma 1. (2--A)f-- if ond anly if

()fo=o/ - e-(h /)rA0l(r)dr + a(s) e(-)Ao(r)drds,

where A() =--m()Ao.
Lemma 2. For 11,2,

Ker( A) ,e( s) /i
i=O

(--1)-A(-(1)/(i--+l)[=O, =1, ...,
i=j--1

Theorem 1. Let a(A) be the spectrum of the infinitesimal gener-
ator A of S(t). Then

a(A)=a(A) U a,(A),
where a(A)=(: m()=0} and a(A)=(: m()0, /m()ea(Ao)}. Each
nonzero point of qe(A) i8 not an eigenvalue of A and is a cluster point

of a(A). a(A) consists only of discrete eigenvalues.
Suppose m(0)=0. Then, 0 is an eigenvalue of A with infinite multi-

plicity. 0 is an isolated point of a(A) if it is a simple zero of m(),
and is a cluster point of a(A) if it is a multiple zero of m().

Outline of the proof. With the aid of the Riesz-Schauder theory
and Lemma 1 it is not difficult to verify that

p(A)={: m()0, /m() e p(A0)}.
Suppose 00 is a zero of m() of the k-th order. Then, there

exists a unction h() which is holomorphic in a neighbourhood of 0
such that m()/=(--o)h(). Applying the inverse unction theorem
to (-0)h() and noting Z we see that or sufficiently large ] there
exists a complex number such that (-0)h()=7/ and 0. Then,
/m()=pe a(Ao), and hence 0 is a cluster point of a(A).

Next, suppose that m(0)0, o/m(o)ea(Ao). If there exists a
sequence (} such that 0e a(A), m()O and 0, then /m()-
o/m(o), /m()e a(Ao). Since a(Ao) consists only of isolated points, we
have /m()=o/m(o) or sufficiently large ]. In view o the theorem
of identity we have /m()o/m(o) which contradicts (5).

Theorem 2. Suppose that m(0)0, 0 and the generalized eigen-
vectors of Ao are complete in H. Then, the generaized eigenvectors of
A are complete in M.

Outline of the proof. Let P be the spectral projection to the
generalized eigenspace of Ao associated with e a(Ao). Set H=PH and
Ao=Aol,. Then, clearly PV=Hn. If we denote the solution semigroup
o the equation (3) with A0 in place of A0 by S(t)=exp(tA), then the
commutativity o A0 and P yields

S(t)--S(t) and A=A](),
where M=HL(--h, 0; H). It follows from Lemma 2 that for with
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2/m(2)=/n, (2--A)t=0 if and only if (2 A) 0. Thus, the assertion
of the theorem ollows rom the corresponding result of A. Manitius ([1]"
Theorems 5.1 and 5.4(if)) in the case o a finite dimensional space.

As an application we consider the identification problems for the
equation (3) (cf. Theorem 3.1 of S. Nakagiri and M. Yamamato [3]).

We denote by (3) the equation (3) with A0, ’, a replaced by A,, a respectively. The mild solution o (3") satisfying the initial con-
ditions (2) is denoted by u’(t; g), and the solution semigroup or (3)
by S(t)=exp(tA). We assume that A and a satisfy the same type
o assumptions as A0 and a. Hence, the conclusion o Theorem 1 holds
also or An.

Let g=(g, g)e M, i=1, ..., q, be a finite set of initial values. We
say that A0, Y, a are identifiable if Ao==-A, =, a(s)--a(s) follows rom

u(t; g)--u(t; g), i--l, ..., q.
Let {/’n=l, 2,...} be the set of eigenvalues of A, and by {0,

", q0} a base of Ker(p--(A)*), where d--dimKer(/--A). Let
{ n. ]--1,2,. } be the totality of the complex numbers 2 satisfying

n), then {n k--l,’..,2/m(2)=/n. If we set qn (0, exp(2s)
is a base o Ker(2n.--A), where A is the infinitesimal generator of the
solution semigroup associated with the equation (3) with A replaced
by its adjoint (A:)*.

By F we denote the structural operator for (3) and by (
the duality between M* and M.

Theorem :. Suppose that =/=0, m(0)=0 and the generalized
eigenvectors of A are complete in H. If the set of initial values
{g, ..., g} satisfies

( i-l,"’,q)_d,rank (F’g, n)" k $ 1, d
for each n, ], then Ao, , a are identifiable.

One can prove this theorem following the proof of Proposition 3. 1
and Theorem 3.1 of [3] and taking Remark 3.2 of the same paper into

consideration. The only difference is to show a(A)a(A) and a(A)
a(A) instead of a(A,)a(A) to start with.

The author wishes to express his deepest appreciation to Prof.
S. Nakagiri of Kobe University for his valuable remarks and suggestions
and also for his constant encouragement during the preparation of this
paler.
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