18. A Note on a Paper of Iwasawa

By Genjiro Fujisaki
Department of Mathematics, College of Arts and Sciences, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 13, 1990)

1. Let F be a finite extension of a finite algebraic number field k and denote by C_{k} and C_{F} the ideal class group of k and of F respectively. A subgroup A of C_{k} is said to capitulate in F if A is contained in the kernel of natural homomorphism $C_{k} \rightarrow C_{F}$. The principal ideal theorem states that C_{k} always capitulates in Hilbert's class field K over k. However, for some k, C_{k} already capitulates in a proper subfield M of $K: k \subseteq M \subseteq K$. Such a field M exists if and only if there is a prime number p such that $C_{k, p}$ (=the p-class group of k) capitulates in a proper subfield F of Hilbert's p-class field K_{p} over $k: k \subseteq F \subseteq K_{p}$ (cf. [1]). In his paper ([1]), Iwasawa gave simple examples of k such that the 2 -class group $C_{k, 2}$ already capitulates in a proper subfield F of Hilbert's 2-class field K_{2} over k.

Iwasawa's example. Let p, p_{1}, p_{2} be 3 distinct prime numbers such that
i) $\quad p \equiv p_{1} \equiv p_{2} \equiv 1 \bmod .4$ and Legendre symbols

$$
\left(\frac{p}{p_{1}}\right)=\left(\frac{p}{p_{2}}\right)=-1
$$

ii) the norm of the fundamental unit of the real quadratic field $k^{\prime}=$ $\boldsymbol{Q}\left(\sqrt{p_{1} p_{2}}\right)$ is 1 .

Let

$$
\begin{gathered}
k=\boldsymbol{Q}\left(\sqrt{p p_{1} p_{2}}\right), \quad K_{2}=\boldsymbol{Q}\left(\sqrt{p}, \sqrt{p_{1}}, \sqrt{p_{2}}\right), \\
F=\boldsymbol{Q}\left(\sqrt{p}, \sqrt{p_{1} p_{2}}\right) .
\end{gathered}
$$

Then K_{2} is Hilbert's 2-class field over k and $C_{k, 2}$ capitulates in the proper subfield F of $K_{2}: k \subseteq F \subseteq K_{2}$.
2. Let k and K_{2} be as stated above. Then

$$
F=\boldsymbol{Q}\left(\sqrt{p}, \sqrt{p_{1} p_{2}}\right), \quad \boldsymbol{F}_{1}=\boldsymbol{Q}\left(\sqrt{p_{1}}, \sqrt{p p_{2}}\right), \quad \boldsymbol{F}_{2}=\boldsymbol{Q}\left(\sqrt{p_{2}}, \sqrt{p p_{1}}\right)
$$

are all proper subfields of K_{2} over k. In the following, we shall consider a question whether $C_{k, 2}$ capitulates also in F_{1} or in F_{2}.

Proposition 1. Let $K_{2}^{(2)}$ denote Hilbert's 2-class field over K_{2}.
i) If $K_{2}=K_{2}^{(2)}, C_{k, 2}$ capitulates also both in F_{1} and in F_{2}.
ii) If $K_{2} \neq K_{2}^{(2)}, C_{k, 2}$ capitulates neither in F_{1} nor in F_{2}.

Proof. This is a consequence of Theorem 2 in [2].
Corollary. $\quad C_{k, 2}$ capitulates in $F_{1} \Longleftrightarrow C_{k, 2}$ capitulates in F_{2}.
Proposition 2. Let $h_{2}(F)$ be the 2 -class number of F. Then
i) $K_{2}=K_{2}^{(2)} \Longleftrightarrow h_{2}(F)=2$.
ii) $K_{2} \neq K_{2}^{(2)} \Longleftrightarrow 4 \mid h_{2}(F)$.

Proof. We shall prove ii) from which i) follows. Suppose $K_{2} \neq K_{2}^{(2)}$. Since $\operatorname{Gal}\left(K_{2} / k\right)$ is the four group, there is a (unique) subfield L of $K_{2}^{(2)}$ such that $K_{2} \subseteq L \subseteq K_{2}^{(2)}$ and $G a l(L / k)$ is a nonabelian group of order 8 (cf. [2]). Then L / F is an unramified abelian extension of degree 4 whence $4 \mid h_{2}(F)$. The converse is obvious.

Remark. Replacing F by F_{1} or F_{2}, we see that
i) $h_{2}\left(F_{1}\right)=2 \Longleftrightarrow K_{2}=K_{2}^{(2)} \Longleftrightarrow h_{2}\left(F_{2}\right)=2$,
ii) $\quad 4\left|h_{2}\left(F_{1}\right) \Longleftrightarrow K_{2} \neq K_{2}^{(2)} \Longleftrightarrow 4\right| h_{2}\left(F_{2}\right)$
where $h_{2}\left(F_{i}\right)=$ the 2 -class number of $F_{i}(i=1,2)$.
3. Let
$K=$ a real bicyclic biquadratic extension of \boldsymbol{Q},
$E_{K}=$ the unit group of K,
$k_{i}(i=1,2,3)=$ the 3 quadratic subextensions of K / \boldsymbol{Q},
$\varepsilon_{i}=$ the fundamental unit of $k_{i}(i=1,2,3)$,
$h_{2}(K), h_{2}\left(k_{i}\right)$ denote the 2 -class numbers of $K, k_{i}(i=1,2,3)$.
Let

$$
\begin{aligned}
Q(K)= & {\left[E_{K}:\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle\right] } \\
= & \text { the group index of }\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle \text { in } E_{K}, \text { where }\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\rangle \text { is } \\
& \text { the subgroup of } E_{K} \text { generated by } \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \text { and } \pm 1 .
\end{aligned}
$$

Then, it is known that $Q(K)=1,2$ or 4 and

$$
h_{2}(K)=\frac{1}{4} Q(K) h_{2}\left(k_{1}\right) h_{2}\left(k_{2}\right) h_{2}\left(k_{3}\right) .
$$

$\left(h(K)=\frac{1}{4} Q(K) h\left(k_{1}\right) h\left(k_{2}\right) h\left(k_{3}\right)\right.$ for the class numbers) ([3]). Furthermore, a system of fundamental units of K is one of the following types ([3])
i) $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$
ii) $\sqrt{\varepsilon_{1}}, \varepsilon_{2}, \varepsilon_{3}\left(N \varepsilon_{1}=1\right)$
iii) $\sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \varepsilon_{3}$
iv) $\sqrt{\varepsilon_{1} \varepsilon_{2}}, \varepsilon_{2}, \varepsilon_{3}$
$\left(N \varepsilon_{1}=N \varepsilon_{2}=1\right)$
v) $\sqrt{\varepsilon_{1} \varepsilon_{2}}, \sqrt{\varepsilon_{3}}, \varepsilon_{2}$
$\left.\begin{array}{l}\text { vi) } \sqrt{\varepsilon_{1} \varepsilon_{2}}, \sqrt{\varepsilon_{2} \varepsilon_{3}}, \sqrt{\varepsilon_{3} \varepsilon_{1}} \\ \text { vii) } \sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}, \varepsilon_{2}, \varepsilon_{3}\end{array}\right\}$
viii) $\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}, \varepsilon_{2}, \varepsilon_{3} \quad\left(N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}=-1\right)$
where $N \varepsilon_{i}$ is the abbreviation of $N_{k_{i} / Q}\left(\varepsilon_{i}\right)(i=1,2,3)$.
4. Let p, p_{1}, p_{2} be 3 distinct prime numbers satisfying the conditions i), ii) in Iwasawa's example and let

$$
\begin{gathered}
k=\boldsymbol{Q}\left(\sqrt{p p_{1} p_{2}}\right), \quad K_{2}=\boldsymbol{Q}\left(\sqrt{p}, \sqrt{p_{1}}, \sqrt{p_{2}}\right), \\
F=\boldsymbol{Q}\left(\sqrt{p}, \sqrt{p_{1} p_{2}}\right)
\end{gathered}
$$

as before.
Lemma 1. Let $\varepsilon(k), \varepsilon(p)$ and $\varepsilon\left(p_{1} p_{2}\right)$ denote fundamental units of k, $\boldsymbol{Q}(\sqrt{p})$ and $\boldsymbol{Q}\left(\sqrt{p_{1} p_{2}}\right)$ respectively. Then, $\left\{\varepsilon(k), \varepsilon(p), \varepsilon\left(p_{1} p_{2}\right)\right\}$ is a fundamental system of units of F and $Q(F)=1$.

Proof. We set $\varepsilon_{1}=\varepsilon(k), \varepsilon_{2}=\varepsilon(p), \varepsilon_{3}=\varepsilon\left(p_{1} p_{2}\right)$. Since $N \varepsilon_{1}=N \varepsilon_{2}=-1, N \varepsilon_{3}$ $=1$, either $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ or $\left\{\varepsilon_{1}, \varepsilon_{2}, \sqrt{\varepsilon_{3}}\right\}$ is a fundamental system of units of F.

Suppose $\sqrt{\varepsilon_{3}} \in F$, then $F=\boldsymbol{Q}\left(\sqrt{p_{1} p_{2}}\right)\left(\sqrt{\varepsilon_{3}}\right)$. Hence, only prime divisors of $\boldsymbol{Q}\left(\sqrt{p_{1} p_{2}}\right)$ lying above the rational prime 2 may ramify for $\boldsymbol{F} / \boldsymbol{Q}\left(\sqrt{p_{1} p_{2}}\right)$. But, this is a contradiction because prime divisors of $\boldsymbol{Q}\left(\sqrt{p_{1} p_{2}}\right)$ lying above p ramify for $\boldsymbol{F} / \boldsymbol{Q}\left(\sqrt{p_{1} p_{2}}\right)$, so the result follows.

In the following, we shall denote by $h_{2}(d)$ the 2-class number of quadratic field $\boldsymbol{Q}(\sqrt{\bar{d})}$.

Since $h_{2}(p)=1$ and $h_{2}\left(p p_{1} p_{2}\right)=4$, we have the following.
Corollary 1. $h_{2}(F)=h_{2}\left(p_{1} p_{2}\right)(\geq 2)$.
Corollary 2. i) $h_{2}(F)=2 \Longleftrightarrow h_{2}\left(p_{1} p_{2}\right)=2$

$$
\Longleftrightarrow\left(\frac{p_{1}}{p_{2}}\right)_{4}\left(\frac{p_{2}}{p_{1}}\right)_{4}=-1
$$

ii) $\quad 4\left|h_{2}(F) \Longleftrightarrow 4\right| h_{2}\left(p_{1} p_{2}\right) \Longleftrightarrow\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}=1$
where $(-)_{4}$ denotes the biquadratic residue symbol.
Proof. The 2nd equivalence follows from Proposition 3.3 in [5].
Remark. Let $\boldsymbol{F}_{1}=\boldsymbol{Q}\left(\sqrt{p_{1}}, \sqrt{p p_{2}}\right)$ and $F_{2}=\boldsymbol{Q}\left(\sqrt{p_{2}}, \sqrt{p p_{1}}\right)$ as before, then

$$
\begin{aligned}
h_{2}\left(F_{1}\right) & =\frac{1}{4} Q\left(F_{1}\right) h_{2}\left(p p_{1} p_{2}\right) h_{2}\left(p_{1}\right) h_{2}\left(p p_{2}\right) \\
& =\frac{1}{4} Q\left(F_{1}\right) \cdot 4 \cdot 1 \cdot 2=2 Q\left(F_{1}\right)
\end{aligned}
$$

Similarly, $h_{2}\left(F_{2}\right)=2 Q\left(F_{2}\right)$.
Now, we may give an answer to our question raised in section 2.
Theorem. Let k, K_{2}, F, F_{1} and F_{2} be such fields as stated in Iwasawa's example.
(1) $\quad C_{k, 2}\left(=\right.$ the 2-class group of k) capitulates in all F, F_{1} and F_{2} $\left(\Longleftrightarrow C_{k, 2}\right.$ capitulates in $F_{1} \Longleftrightarrow C_{k, 2}$ capitulates in ${\underset{\sim}{2}}^{2}$)

$$
\begin{aligned}
& \Longleftrightarrow h_{2}(F)=2 \Longleftrightarrow h_{2}\left(p_{1} p_{2}\right)=2 \Longleftrightarrow\left(\frac{p_{1}}{p_{2}}\right)_{4}\left(\frac{p_{2}}{p_{1}}\right)_{4}=-1 \\
& \Longleftrightarrow h_{2}\left(F_{1}\right)=2 \Longleftrightarrow Q\left(F_{1}\right)=1 \Longleftrightarrow h_{2}\left(F_{2}\right)=2 \Longleftrightarrow Q\left(F_{2}\right)=1
\end{aligned}
$$

$$
\begin{equation*}
C_{k, 2} \text { capitulates in } F, \text { but neither in } F_{1} \text { nor in } F_{2} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \Longleftrightarrow 4\left|h_{2}(F) \Longleftrightarrow 4\right| h_{2}\left(p_{1} p_{2}\right) \Longleftrightarrow\left(\frac{p_{1}}{p_{2}}\right)_{4}=\left(\frac{p_{2}}{p_{1}}\right)_{4}=1 \\
& \Longleftrightarrow 4\left|h_{2}\left(F_{1}\right) \Longleftrightarrow 2\right| Q\left(F_{1}\right) \Longleftrightarrow 4\left|h_{2}\left(F_{2}\right) \Longleftrightarrow 2\right| Q\left(F_{2}\right) .
\end{aligned}
$$

Corollary. Let $\varepsilon(d)$ denote a fundamental unit of $\boldsymbol{Q}(\sqrt{d})$.
i) $h_{2}\left(p_{1} p_{2}\right)=2 \Longleftrightarrow\left\{\varepsilon\left(p p_{1} p_{2}\right), \varepsilon\left(p_{1}\right), \varepsilon\left(p p_{2}\right)\right\}$ is a fundamental system of units of $F_{1} \Longleftrightarrow\left\{\varepsilon\left(p p_{1} p_{2}\right), \varepsilon\left(p_{2}\right), \varepsilon\left(p p_{1}\right)\right\}$ is a fundamental system of units of F_{2}.
ii) $4 \mid h_{2}\left(p_{1} p_{2}\right) \Longleftrightarrow\left\{\sqrt{\varepsilon\left(p p_{1} p_{2}\right) \varepsilon\left(p_{1}\right) \varepsilon\left(p p_{2}\right)}, \varepsilon\left(p_{1}\right), \varepsilon\left(p p_{2}\right)\right\}$ is a fundamental system of units of $F_{1} \Longleftrightarrow Q\left(F_{1}\right)=2 \Longleftrightarrow h_{2}\left(F_{1}\right)=4 \Longleftrightarrow$ similar equivalent conditions for F_{2}.

Proof. Set $\varepsilon_{1}=\varepsilon\left(p p_{1} p_{2}\right), \varepsilon_{2}=\varepsilon\left(p_{1}\right), \varepsilon_{3}=\varepsilon\left(p p_{2}\right) . \quad$ Since $N \varepsilon_{1}=N \varepsilon_{2}=N \varepsilon_{3}=-1$, either $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ or $\left\{\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}, \varepsilon_{2}, \varepsilon_{3}\right\}$ is a fundamental system of units of F_{1}, so the results follow for F_{1} (similarly for F_{2}).

Example. Let $\left(p_{1}, p_{2}\right)=(13,17)$ and let $p \equiv 1 \bmod .4$ be any prime number satisfying $\left(\frac{p}{13}\right)=\left(\frac{p}{17}\right)=-1$ (for example, $p \equiv 5 \bmod .4 \cdot 13 \cdot 17$). The norm of the fundamental unit of $\boldsymbol{Q}(\sqrt{13 \cdot 17})$ is 1 and its class number is 2. In this case

$$
\begin{gathered}
k=\boldsymbol{Q}(\sqrt{13 \cdot 17 \cdot p}), \quad K_{2}=\boldsymbol{Q}(\sqrt{p}, \sqrt{13}, \sqrt{17}) \\
\boldsymbol{F}=\boldsymbol{Q}(\sqrt{p}, \sqrt{13 \cdot 17}), \quad \boldsymbol{F}_{1}=\boldsymbol{Q}(\sqrt{13}, \sqrt{17 \cdot p}), \quad F_{2}=\boldsymbol{Q}(\sqrt{17}, \sqrt{13 \cdot p})
\end{gathered}
$$

and $C_{k, 2}$ capitulates in all proper subfields F, F_{1} and F_{2} of K_{2}.
Let $\left(p_{1}, p_{2}\right)=(13,53)$ and let $p \equiv 1 \bmod .4$ be any prime number satisfying $\left(\frac{p}{13}\right)=\left(\frac{p}{53}\right)=-1$ (for instance, $p \equiv 5 \bmod .4 \cdot 13 \cdot 53$). The norm of the fundamental unit of $\boldsymbol{Q}(\sqrt{13 \cdot 53})$ is 1 and its class number is 4 . In this case

$$
\begin{aligned}
& \quad k=\boldsymbol{Q}(\sqrt{13 \cdot 53 \cdot p}), \quad K_{2}=\boldsymbol{Q}(\sqrt{p}, \sqrt{13}, \sqrt{53}), \\
& \quad F=\boldsymbol{Q}(\sqrt{p}, \sqrt{13 \cdot 53}), \quad \boldsymbol{F}_{1}=\boldsymbol{Q}(\sqrt{13}, \sqrt{53 \cdot p}), \quad \boldsymbol{F}_{2}=\boldsymbol{Q}(\sqrt{53}, \sqrt{13 \cdot p}) \\
& \text { and } C_{k, 2} \text { capitulates in } F, \text { but neither in } F_{1} \text { nor in } F_{2} .
\end{aligned}
$$

References

[1] K. Iwasawa: A note on capitulation problem for number fields. Proc. Japan Acad., 65A, 59-61 (1989).
[2] H. Kisilevsky: Number fields with class number congruent to $4 \bmod 8$ and Hilbert's Theorem 94. J. Number Theory, 3, 271-279 (1976).
[3] T. Kubota: Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J., 10, 65-85 (1956).
[4] H. Wada: A Table of Ideal Class Numbers of Real Quadratic Fields. Sophia Kokyuroku in Mathematics, 10 (1981).
[5] Y. Yamamoto: Divisibility by 16 of class number of quadratic fields whose 2-class groups are cyclic. Osaka J. Math., 21, 1-22 (1984).

