68. The Aitken-Steffensen Formula for Systems of Nonlinear Equations. IV

By Tatsuo Noda
Faculty of Engineering, Toyama Prefectural University
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 12, 1990)

1. Introduction. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a vector in R^{n} and D a region contained in R^{n}. Let $f(x)$ be a real-valued nonlinear function defined on D. We denote by $R^{n \times n}$ the set of all $n \times n \cdot$ real matrices. Define an n-dimensional vector $\nabla f(x)$ and an $n \times n$ matrix $H(x)$ by

$$
\nabla f(x)=\left(\partial f(x) / \partial x_{i}\right) \quad(1 \leqq i \leqq n)
$$

and

$$
H(x)=\left(\partial^{2} f(x) / \partial x_{j} \partial x_{k}\right) \quad(1 \leqq j, k \leqq n) .
$$

For any $x \in R^{n}$, we shall use the norms $\|x\|$ and $\|x\|_{2}$ defined by

$$
\|x\|=\max _{1 \leqq i \leqq n}\left|x_{i}\right| \quad \text { and } \quad\|x\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2},
$$

respectively. The corresponding matrix norms, denoted by $\|A\|$ and $\|A\|_{s}$, are defined as

$$
\|A\|=\max _{1 \leqq i \leqq n} \sum_{j=1}^{n}\left|a_{i j}\right| \quad \text { and } \quad\|\boldsymbol{A}\|_{s}=\lambda^{1 / 2}
$$

respectively, where $A=\left(a_{i j}\right) \in R^{n \times n}$, and λ is the maximum eigenvalue of $A^{*} A, A^{*}$ being the transposed matrix of A. We also define the matrix norm $\|A\|_{E}$ by

$$
\|\boldsymbol{A}\|_{E}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}{ }^{2}\right)^{1 / 2} .
$$

In this section, we shall assume the same conditions (A.1)-(A.4) as in [5] except for (A.1).
(A.1) $f(x)$ is three times continuously differentiable on D.
(A.2) There exists a point $\bar{x} \in D$ satisfying $\nabla f(x)=0$.
(A.3) The $n \times n$ symmetric matrix $H(\bar{x})$ is positive definite.
(A.4) β is a constant satisfying $0<\beta<2$.

We see that $f(x)$ has a local minimum at \bar{x} by conditions (A.1)-(A.3). For computational purpose, we have proposed in [5, (2.1)] an iteration method

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}-\frac{\beta}{\left\|H\left(x^{(k)}\right)\right\|_{E}} \nabla f\left(x^{(k)}\right) \tag{1.1}
\end{equation*}
$$

for finding \bar{x} under conditions (A.1)-(A.4).
As mentioned in [2], [3] and [4], Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. Now, we have studied the above Aitken-Steffensen formula for systems of nonlinear equations in [2], [3] and [4], and shown [2, Theorem 2], [3, Theorem 2] and [4, Theorem 1].

The purpose of this paper is to construct a formula by use of (1.1), which we shall also call an Aitken-Steffensen formula, and to show Theorem 1 by using [2, Theorem 2].
2. Statement of results. Define an n-dimensional vector $g(x)=\left(g_{i}(x)\right)$ by

$$
\begin{equation*}
g(x)=x-\frac{\beta}{\|H(x)\|_{E}} \nabla f(x) . \tag{2.1}
\end{equation*}
$$

Given $x^{(0)} \in R^{n}$, define $x^{(i)} \in R^{n}(i=1,2, \cdots)$ by

$$
x^{(i+1)}=g\left(x^{(i)}\right) \quad(i=0,1,2, \cdots)
$$

Put $d^{(i)}=x^{(i)}-\bar{x}$ for $i=0,1,2, \cdots$, and then define an $n \times n$ matrix D_{k} by

$$
D_{k}=\left(d^{(k)}, d^{(k+1)}, \cdots, d^{(k+n-1)}\right)
$$

In addition to conditions (A.1)-(A.4), we suppose the following two conditions (A.5) and (A.6) which are based on [2, Theorem 2].
(A.5) The vectors $d^{(k)}, d^{(k+1)}, \cdots, d^{(k+n-1)}, k=0,1,2, \cdots$, are linearly independent.
(A.6) $\quad \inf \left\{\left|\operatorname{det} D_{k}\right| / \|\left. d^{(k)}\right|_{2} ^{n}\right\}>0$.

As suggested by [2, (1.5)], we can construct an Aitken-Steffensen formula (2.2)

$$
y^{(k)}=x^{(k)}-\Delta X^{(k)}\left(\Delta^{2} X^{(k)}\right)^{-1} \Delta x^{(k)} \quad(k=0,1,2, \cdots)
$$

where an n-dimensional vector $\Delta x^{(k)}$, and $n \times n$ matrices $\Delta X^{(k)}$ and $\Delta^{2} X^{(k)}$ are given by

$$
\begin{aligned}
\Delta x^{(k)} & =x^{(k+1)}-x^{(k)}, \\
\Delta X^{(k)} & =\left(x^{(k+1)}-x^{(k)}, \cdots, x^{(k+n)}-x^{(k+n-1)}\right)
\end{aligned}
$$

and

$$
\Delta^{2} X^{(k)}=\Delta X^{(k+1)}-\Delta X^{(k)}
$$

In this paper, we shall show the following
Theorem 1. Under conditions (A.1)-(A.6), for $x^{(k)} \in U(\bar{x} ; \delta)$, there exists a constant M_{2} such that the following property

$$
\left\|y^{(k)}-\bar{x}\right\|_{2} \leqq M_{2}\left\|x^{(k)}-\bar{x}\right\|_{2}^{2}
$$

holds for sufficiently large k.
3. Proof of Theorem 1. We shall prove Theorem 1. By (A.3),

$$
0<(\rho, H(\bar{x}) \rho) \leqq\|H(\bar{x})\|_{E}
$$

for any $\rho \in R^{n}$ with $\|\rho\|_{2}=1$. Since, by (A.1), $\|H(x)\|_{E}$ is continuous at every point $x \in D$, there exists a neighbourhood

$$
U\left(\bar{x} ; \delta_{1}\right)=\left\{x ;\|x-\bar{x}\|_{2}<\delta_{1}\right\} \subset D
$$

such that $x \in U\left(\bar{x} ; \delta_{1}\right)$ implies $\|H(x)\|_{E}>0$. Then, we observe that, by (A.1), (3.1) $\quad g_{i}(x)(1 \leqq i \leqq n)$ are two times continuously differentiable on $U\left(\bar{x} ; \delta_{1}\right)$, and, from (2.1), by (A.2),

$$
\begin{equation*}
\bar{x}=g(\bar{x}) \tag{3.2}
\end{equation*}
$$

while we have shown in [5] that the following inequality

$$
\begin{equation*}
\|G(\bar{x})\|_{s}<1 \tag{3.3}
\end{equation*}
$$

holds from (A.3) and (A.4), where $G(x)=\left(\partial g_{i}(x) / \partial x_{j}\right)(1 \leqq i, j \leqq n)$. Choosing a constant M so as to satisfy $\|G(\bar{x})\|_{s}<M<1$, we see, by (A.1), that there exists a constant $\delta \leqq \delta_{1}$ such that $U(\bar{x} ; \delta) \subset U\left(\bar{x} ; \delta_{1}\right)$ and $\|G(x)\|_{s}<M$ for $x \in$ $U(\bar{x} ; \delta) . \quad$ By (1.1), (2.1) and (3.2),

$$
\begin{aligned}
x^{(k+1)}-\bar{x} & =g\left(x^{(k)}\right)-g(\bar{x}) \\
& =\int_{0}^{1} G\left(\bar{x}+t\left(x^{(k)}-\bar{x}\right)\right)\left(x^{(k)}-\bar{x}\right) d t .
\end{aligned}
$$

We note that $\bar{x}+t\left(x^{(k)}-\bar{x}\right) \in U(\bar{x} ; \delta)(0 \leqq t \leqq 1)$, provided $x^{(k)} \in U(\bar{x} ; \delta)$. Then, by $\|G(x)\|_{s}<M$ for $x \in U(\bar{x} ; \delta)$ shown above,

$$
\int_{0}^{1}\left\|G\left(\bar{x}+t\left(x^{(k)}-\bar{x}\right)\right)\right\|_{s} d t \leqq M
$$

holds, so that we have

$$
\begin{equation*}
\left\|x^{(k+1)}-\bar{x}\right\|_{2} \leqq M\left\|x^{(k)}-\bar{x}\right\|_{2} \tag{3.4}
\end{equation*}
$$

for $x^{(k)} \in U(\bar{x} ; \delta)$.
For the proof of Theorem 1, we need the following well-known relations.
$n^{-1 / 2}\|x\|_{2} \leqq\|x\| \leqq\|x\|_{2} \quad$ for all $x \in R^{n}$,
(3.6) $\|I\|=\|I\|_{s}=1 \quad$ for the identity matrix $I \in R^{n \times n}$,
(3.7) $\|A\|_{s} \leqq\|A\|_{E} \quad$ for all $A \in R^{n \times n}$
and
(3.8) $\quad n^{-1 / 2}\|A\|_{s} \leqq\|A\| \leqq n^{1 / 2}\|A\|_{s} \quad$ for all $A \in R^{n \times n}$.

Now, we recall that conditions (A.1)-(A.4) imply (3.1), (3.2) and (3.3) as shown above. Then applying the argument in the proof of [2, Theorem 2] to the norms $\|x\|_{2}$ and $\|A\|_{s}$ instead of the norms $\|x\|$ and $\|A\|$, respectively, and using (3.4), (3.5), (3.6), (3.7) and (3.8), we deduce that, for $x^{(k)} \in U(\bar{x} ; \delta)$, there exists a constant M_{2} such that

$$
\left\|y^{(k)}-\bar{x}\right\|_{2} \leqq M_{2}\left\|x^{(k)}-\bar{x}\right\|_{2}^{2}
$$

holds for sufficiently large k. In this way, we have proved Theorem 1, as desired.
4. Numerical example. We deal with a function

$$
y(x ; a, b, c, d)=e^{a x}(c \cos b x+d \sin b x) \quad(a<0)
$$

which is the same as in [5]. In order to show the efficiency of the AitkenSteffensen formula (2.2), we consider a system of nonlinear equations, Example 4.1. The solution of Example 4.1 using the Aitken-Steffensen formula (2.2) is presented in Table 4.1 below, together with the solution by the iteration method [5, (2.1)].

Example 4.1: $\left\{\begin{array}{l}y(0.0 ; a, b, c, d)=1.50, \\ y(0.8 ; a, b, c, d)=-0.05, \\ y(1.6 ; a, b, c, d)=-0.12, \\ y(2.4 ; a, b, c, d)=0.04 .\end{array}\right.$
The solution is $(a, b, c, d)=(-1.50,-2.50,1.50,-0.50)$.
Table 4.1. Computation results for Example 4.1

Methods	Solutions
Iteration method $[5,(2.1)](\beta=0.99)$	$(-1.506458,-2.501487$,
	$1.499880,-0.5009617)$
Aitken-Steffensen formula (2.2)	$(-1.502620,-2.505557$,
	$1.499941,-0.5007080)$
$\left(a^{(0)}, b^{(0)}, c^{(0)}, d^{(0)}\right)=(-1.0,-1.0,-1.0,-1.0)$	

The author would like to express his hearty thanks to H. Mine, Professor Emeritus of Kyoto University, for many valuable suggestions.

References

[1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).
[2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations. Sûgaku, 33, 369-372 (1981) (in Japanese).
[3] -: The Aitken-Steffensen formula for systems of nonlinear equations. II. ibid., 38, 83-85 (1986) (in Japanese).
[4] --: The Aitken-Steffensen formula for systems of nonlinear equations. III. Proc. Japan Acad., 62A, 174-177 (1986).
[5] -: A modification of the gradient method and function extremization. ibid., 65A, 39-42 (1989).

