By Tatsuo NODA

Faculty of Engineering, Toyama Prefectural University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1990)

1. Introduction. Let $x = (x_1, x_2, \dots, x_n)$ be a vector in \mathbb{R}^n and D a region contained in \mathbb{R}^n . Let f(x) be a real-valued nonlinear function defined on D. We denote by $\mathbb{R}^{n \times n}$ the set of all $n \times n$ real matrices. Define an *n*-dimensional vector $\nabla f(x)$ and an $n \times n$ matrix H(x) by

 $\nabla f(x) = \left(\partial f(x) / \partial x_i\right) \qquad (1 \le i \le n)$

and

$$H(x) = (\partial^2 f(x) / \partial x_i \partial x_k) \qquad (1 \le j, k \le n)$$

For any $x \in \mathbb{R}^n$, we shall use the norms ||x|| and $||x||_2$ defined by

$$\|x\| = \max_{1 \le i \le n} |x_i|$$
 and $\|x\|_2 = \left(\sum_{i=1}^n x_i^2\right)^{1/2}$,

respectively. The corresponding matrix norms, denoted by ||A|| and $||A||_{s}$, are defined as

 $\|A\| = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$ and $\|A\|_s = \lambda^{1/2}$,

respectively, where $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, and λ is the maximum eigenvalue of A^*A , A^* being the transposed matrix of A. We also define the matrix norm $||A||_E$ by

$$\|A\|_{E} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}\right)^{1/2}$$

In this section, we shall assume the same conditions (A.1)-(A.4) as in [5] except for (A.1).

- (A.1) f(x) is three times continuously differentiable on D.
- (A.2) There exists a point $\bar{x} \in D$ satisfying $\nabla f(x) = 0$.
- (A.3) The $n \times n$ symmetric matrix $H(\bar{x})$ is positive definite.
- (A.4) β is a constant satisfying $0 < \beta < 2$.

We see that f(x) has a local minimum at \bar{x} by conditions (A.1)-(A.3). For computational purpose, we have proposed in [5, (2.1)] an iteration method

(1.1)
$$x^{(k+1)} = x^{(k)} - \frac{\beta}{\|H(x^{(k)})\|_{E}} \nabla f(x^{(k)})$$

for finding \bar{x} under conditions (A.1)–(A.4).

As mentioned in [2], [3] and [4], Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. Now, we have studied the above Aitken-Steffensen formula for systems of nonlinear equations in [2], [3] and [4], and shown [2, Theorem 2], [3, Theorem 2] and [4, Theorem 1].

The purpose of this paper is to construct a formula by use of (1.1), which we shall also call an Aitken-Steffensen formula, and to show Theorem 1 by using [2, Theorem 2].

2. Statement of results. Define an *n*-dimensional vector $g(x) = (g_i(x))$ by

(2.1)
$$g(x) = x - \frac{\beta}{\|H(x)\|_E} \nabla f(x).$$

Given $x^{\scriptscriptstyle(0)} \in R^n$, define $x^{\scriptscriptstyle(i)} \in R^n$ $(i=1,2,\cdots)$ by

$$x^{(i+1)} = g(x^{(i)})$$
 $(i=0, 1, 2, \cdots).$

Put $d^{(i)} = x^{(i)} - \bar{x}$ for $i = 0, 1, 2, \dots$, and then define an $n \times n$ matrix D_k by $D_k = (d^{(k)}, d^{(k+1)}, \dots, d^{(k+n-1)}).$

In addition to conditions (A.1)-(A.4), we suppose the following two conditions (A.5) and (A.6) which are based on [2, Theorem 2].

(A.5) The vectors $d^{(k)}$, $d^{(k+1)}$, \cdots , $d^{(k+n-1)}$, $k=0, 1, 2, \cdots$, are linearly independent.

(A.6) $\inf \{ |\det D_k| / || d^{(k)} ||_2^n \} > 0.$

As suggested by [2, (1.5)], we can construct an Aitken-Steffensen formula (2.2) $y^{(k)} = x^{(k)} - \Delta X^{(k)} (\Delta^2 X^{(k)})^{-1} \Delta x^{(k)}$ $(k=0, 1, 2, \cdots),$

where an *n*-dimensional vector $\Delta x^{(k)}$, and $n \times n$ matrices $\Delta X^{(k)}$ and $\Delta^2 X^{(k)}$ are given by

$$\Delta x^{(k)} = x^{(k+1)} - x^{(k)},$$

$$\Delta X^{(k)} = (x^{(k+1)} - x^{(k)}, \cdots, x^{(k+n)} - x^{(k+n-1)})$$

and

(3.3)

 $\varDelta^{2} X^{(k)} \!=\! \varDelta X^{(k+1)} \!-\! \varDelta X^{(k)}.$

In this paper, we shall show the following

Theorem 1. Under conditions (A.1)-(A.6), for $x^{(k)} \in U(\bar{x}; \delta)$, there exists a constant M_2 such that the following property

 $\|y^{(k)} - \bar{x}\|_2 \leq M_2 \|x^{(k)} - \bar{x}\|_2^2$

holds for sufficiently large k.

3. Proof of Theorem 1. We shall prove Theorem 1. By (A.3),

$$0 < (\rho, H(\bar{x})\rho) \leq ||H(\bar{x})||_{E}$$

for any $\rho \in \mathbb{R}^n$ with $\|\rho\|_2 = 1$. Since, by (A.1), $\|H(x)\|_E$ is continuous at every point $x \in D$, there exists a neighbourhood

$$U(\bar{x}; \delta_1) = \{x; \|x - \bar{x}\|_2 < \delta_1\} \subset D$$

such that $x \in U(\bar{x}; \delta_1)$ implies $||H(x)||_E > 0$. Then, we observe that, by (A.1), (3.1) $g_i(x)$ $(1 \le i \le n)$ are two times continuously differentiable on $U(\bar{x}; \delta_1)$, and, from (2.1), by (A.2),

 $(3.2) <math>\overline{x} = g(\overline{x}),$

while we have shown in [5] that the following inequality

$$\|G(ar{x})\|_s\!<\!1$$

holds from (A.3) and (A.4), where $G(x) = (\partial g_i(x)/\partial x_j)$ $(1 \le i, j \le n)$. Choosing a constant M so as to satisfy $||G(\bar{x})||_s < M < 1$, we see, by (A.1), that there exists a constant $\delta \le \delta_1$ such that $U(\bar{x}; \delta) \subset U(\bar{x}; \delta_1)$ and $||G(x)||_s < M$ for $x \in U(\bar{x}; \delta)$. By (1.1), (2.1) and (3.2),

$$x^{(k+1)} - \bar{x} = g(x^{(k)}) - g(\bar{x})$$

= $\int_0^1 G(\bar{x} + t(x^{(k)} - \bar{x}))(x^{(k)} - \bar{x})dt.$

We note that $\bar{x} + t(x^{(k)} - \bar{x}) \in U(\bar{x}; \delta)$ $(0 \leq t \leq 1)$, provided $x^{(k)} \in U(\bar{x}; \delta)$. Then, by $||G(x)||_s < M$ for $x \in U(\bar{x}; \delta)$ shown above,

$$\int_{0}^{1} \|G(\bar{x} + t(x^{(k)} - \bar{x}))\|_{s} dt \leq M$$

holds, so that we have

(3.4) $\|x^{(k+1)} - \bar{x}\|_2 \leq M \|x^{(k)} - \bar{x}\|_2$ for $x^{(k)} \in U(\bar{x}; \delta)$.

For the proof of Theorem 1, we need the following well-known relations.

Now, we recall that conditions (A.1)–(A.4) imply (3.1), (3.2) and (3.3) as shown above. Then applying the argument in the proof of [2, Theorem 2] to the norms $||x||_2$ and $||A||_s$ instead of the norms ||x|| and ||A||, respectively, and using (3.4), (3.5), (3.6), (3.7) and (3.8), we deduce that, for $x^{(k)} \in U(\bar{x}; \delta)$, there exists a constant M_2 such that

$$\|y^{(k)} - \bar{x}\|_2 \leq M_2 \|x^{(k)} - \bar{x}\|_2^2$$

holds for sufficiently large k. In this way, we have proved Theorem 1, as desired.

4. Numerical example. We deal with a function

 $y(x; a, b, c, d) = e^{ax}(c \cos bx + d \sin bx)$ (a < 0),

which is the same as in [5]. In order to show the efficiency of the Aitken-Steffensen formula (2.2), we consider a system of nonlinear equations, Example 4.1. The solution of Example 4.1 using the Aitken-Steffensen formula (2.2) is presented in Table 4.1 below, together with the solution by the iteration method [5, (2.1)].

Example 4.1: $\begin{cases} y(0.0; a, b, c, d) = 1.50, \\ y(0.8; a, b, c, d) = -0.05, \\ y(1.6; a, b, c, d) = -0.12, \\ y(2.4; a, b, c, d) = 0.04. \end{cases}$

The solution is (a, b, c, d) = (-1.50, -2.50, 1.50, -0.50).

Table 4.1.	Computation	results	for	Example	4.1
------------	-------------	---------	-----	---------	-----

Methods	Solutions		
Iteration method [5, (2.1)] (β =0.99)	(-1.506458, -2.501487, 1.499880, -0.5009617)		
Aitken-Steffensen formula (2.2)	(-1.502620, -2.505557, 1.499941, -0.5007080)		

 $(a^{(0)}, b^{(0)}, c^{(0)}, d^{(0)}) = (-1.0, -1.0, -1.0, -1.0)$

The author would like to express his hearty thanks to H. Mine, Professor Emeritus of Kyoto University, for many valuable suggestions.

References

- [1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).
- [2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations. Sûgaku, 33, 369-372 (1981) (in Japanese).
- [3] —: The Aitken-Steffensen formula for systems of nonlinear equations. II. ibid., 38, 83-85 (1986) (in Japanese).
- [4] ——: The Aitken-Steffensen formula for systems of nonlinear equations. III. Proc. Japan Acad., 62A, 174–177 (1986).
- [5] —: A modification of the gradient method and function extremization. ibid.,
 65A, 39-42 (1989).