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q.analogue of de Rham Cohomology Associated
with Jackson Integrals. II

By Kazuhiko AOMOT0
Department of Mathematics, Nagoya University

(Communicated by Kunihiko KODAIRA, M.J.A., Oct. 12, 1990)

We follow the same terminologies as in Part I (see [3]).
1. Critical points and corresponding stable q-cycles. We assume for

simplicity that q is real such that 0q1. We put a--N]+ a’ and study
the asymptotic behaviour o Jackson integrals (,

and ’ e C being fixed. Since (t)=(t).t’.II__ (at), the. major part
(at’0

of [)1 is played by the absolute value It"] for N-+oo. It, attains a maxi-
mum if and only if the level function L(logq t)-- Re (;, logq t) is a minimum,
where (;, ) denotes ;() for e Xc--X(R)C.

We are going to search for points t--q in X for mod 2z__/_ X saris-
log q

lying the following 2 properties"

(i) logqa+(/j,)=l,2,3,.., mod 2zi .Z, for ] ej, J being a set
log q

of n arguments in +_ 1, +_2, ..., +_m} such that [, ] e J, are linearly inde-
pendent in. ](=]((R)R. We denote by the countable set in consisting

of these points t.
(ii) L() attains a minimum on the subset of X consisting of the

points which are X-equivalent to. mod 2i X.
log q

This is a very special case of linear programming problem investigated
in [6] or [11].

We sy that a point t---q stisfying (i) nd (ii) is critical pint with
respect to the level function L(D. We denote by Cr=Crz(L) the set of
11 critical points in X and by Cr(L) the union [Cr(L).

Now we make the following assumptions of genericity.
Assumption 1. For each J, the set Cr is finite or empty. We de-

note by its number"
(1.1) Cr(L) {’, ...,
Assume that 1,( ) ) for every pair r s, r:/:s. Then turns out
equal to [l,, "",/] or O. We say that J is stable if O.

Assumption 2. a":l, q, q, fo.r any k e {+__ 1, ., -_:m}--J and
e Crz(L,).

From these assumptions we see that, for each J--{],..., +/-]},
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J{+_ 1, ., m}, the only one choice of signs (], ., e]} is stable for --_+1. This. occurs if and only if
(1.2) " ".[Z,, ", ] 0, and
(1.3) [, fl, ..., _fl_, ++, ...,
for all ,. Hence the total number of criticM p.oints=[Cr(L) is given by
(1.4) = [Z,, ", Z]=det ((=Z(Z)Z(Z))),

Under the above 2 assumptions, deduce the crucial
Lemma 1.1. A poin$ $=qa in the algebraic tor X is critical for

Lv(a) if and only if
(1.5) b;(qa-z)=0
for any Z e X such tha$ (, Z)>0.

In act, suppose that qa is an element o* Cre(Lv). Then for each Z e X
such that (, Z)>0, we may assume that there exist a non-empty subset K
of J such that Z(Z)0 *or k e K and Z(Z)0 for k e J-K. By Assumptions
1 and 2, we see that one of (a$,q-"), vanishes or k eK. Hence
b;(a-z) vanishes. Conversely, suppose (1.5) holds or all Z such that
(, Z)> 0. Then by Assumptions 1 and 2, one can find a subset J
{1, ..., m} such that qa eXe. If qa is not itseli critical, then there
would exist Z e X such that (, Z)>0 and qa- e Xe. Hence. b;(qa-)O which
is a contradiction.

Definition 1. We denote by c() the set o all =Z., Z e X, such that
L(logv $)L(logv ) so that is a minimum point in c(). We call such
c() s$able cycle if is critical. There are stable cycles, say c(*), .,
c(’).

Since r differ *rom each other, the ollowing holds..
Lemma 1.2. There exist Lauren$ polynomials e , lr, such

that ,(*)=,,, 1s.
Definition 2. Suppose that c(*) is determined by’Jc{ 1,..., m}

such that ],<0, ...,],<0 and ]+>0, ...,]=0. Then the integration

e V, is generally impossible because has poles, on c(*). We

ust replace 0 b nother O’ ter the subtitution T n (1.)

for ]=],, ..., ] so that 0% is well defined. We shall call this modi-
O

fication the regularization of integration of and denote it by reg r.
J

Lemma 1.3.

(1.6) det ((reg f ))c((s )) lr,sK

This act ollows from the asymptotic behaviours of (}, ...,
Indeed, we may assume that ])0, ..., ]0 or c(()), since the regularized

ones are reduced to this case. Then orN+.

(1.7) w(1 q)n {(s),a.m (a((s)))
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where II=. (a(())0 =/=0 by Assumption 2. Hence the lemma.
(a(())

As a result, ,..., are linearly independent in H(9", g), which
implies
(1.8) dim H(9’, ).

2. Upper estimate of dim H(9", ). By change of basis we may as-
sume that Z(Z)0 or all ] and r. In fact there exists a basis {, ...,
such that, Z(Z)0 for all ]. The Z , ..,Z=lZ+Z2,. Z lZ+Zforma
basis if e Z is sufficiently large and Z(Z)>O for all ] and r. We also
assume (V, Z)>0 for all r.

We take a e f. Since

(2.1) gze=e_uz b;(t) Qz,
b;(t)

g% e i b;(t)}Q%(t), i.e. (t)=(Q-zb[(t))., e , we have
(2.2) gz=(Q-zb;(t)).(t)-uzb;(t).(Qz(t)).
We denote by %(u) the subspace of consisting of g% o (2.2)
(2.3) %(u)= Eex {(Q-b;(t))-ub;(t)

{(Q-b;(t))-ub;(t) Q}
(,z)>o

where Y denotes the set of corner vectors spanning the fan F* defined in
Part I, [3]. In the same way we define the subspaces %(u; L, L’) for a se-
quence (L, L’) o non-negative integers (l, ..., ln, l, "", l) as follows"

(2.4) a(u L, L’)= Ezer [QQ;]{(Q-zb;(t))-uzb;(t)Qz}]
+>0 (1-aq-t"O+>o (1-aq-t"O.

Remark that %(u;{0}, 0}) coincides with %(u) itself. We define the
ideals in by taking u0 (i.e. u0) or (, Z) 0"
(2.5) %(0)=ex (Q-b;(t))=er (Q-b;(t))A’,

(,z)>0 (,z)>o

0(Q (t))(2.6) %(0; L,L’)=E, ( Q;} -b;
(,z)>o

’-t")+>o (1-aq-tt"O.+>o (1-a
Then %(0;L,L’)is identical with itself provided =(l+l)O. Fur-
thermore

Lemma 2.1. There exists a non-zero Laurent polynomial G(u a, a’) in
u, a, a such that
(2.7) H,G(uq’a, a’)tzO mod %(u ;L, L’), for e X,
provided (l+l)O, where ’ moves over the set of all points

O ’ or ’0, and,Z such that ,=,, ,,_=_,
_ _

+-
J+l nPn

We now make the assumption

Assumption . G(uqa, a’) don’t vanish for any e X.
Then rom Lemma 2.1, we have
Lemma 2.2. Under Assumptions 1-3, %(u; L, L’)= for all (L, L’)

such that (l+l)O, whence the morphism
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(2.8) . a(u)--+H([2 ", V) >0
is exact.

In act every element in (1.6) of Part I can be expressed by
or q e 2- and 9 e V, 9’ having the same orm such that =(l+l’) is
smaller. By decreasing induction on = (1.+l), one deduce the surjec-
tivity (see the reduction argument in [1])
(2.9) .ffl_V- >H(2 ’, V) >0.
The lemma follows from this because of the inclusion q(U)C_ -’.

As an immediate consequence we have
Corollary to Lemma 2,2, dim _g’/q(u).>_dim H(9 ", 17).
Lemma 2,3, dim.ff/q(0)=. The zeros of (0) in X satisfy the equa-

tions in X
(2.10) Q-zb;(t)=O, zeX,
such that (, z)O and vice versa. Hence they coincide with the set o.f
critical points Cr(L,) for the function (t) (see (1.5)). The number of such
points is equal to .

The subspace q(U) can be regarded as a C[uzlex,(,)>0]-module in
C[u]ex,(,,)>0](R).. Then _/a(u) leing a perturbation of _/oq(O) from
u=0 to u:/:0, the inequality or the semi-continuity of dimension holds
under the finiteness condition. Indeed, let ) be the linear subspace of
spanned by , ..., as in Lemma 1.2. Similarly like Lemma 2.1 we have

Lemma 2.4. There exists a Laurent polynomial G0(u] a, a’) in u, a and

a which is a resultant of q(U) with respect to the basis such that
Go(O a, a’) is not identically zero. and that
(2.11) Go(u]a, a’)trl(t)O mod (+q(U)).
for all l r_n, 1_]_.

Hence under the additional assumption
Assumption 4. Go(uqZla, a’):/:O for all e X,
Lemma 2.5. dim _E/aq(U) _..
From Corollary to Lemma 2.2

(2.12) dim H([2", g)

_.
From (1.8) and from (2.12)
Theorem. Under Assumptions 1-4, we have dim Hn( ", 7)__. and

(2.13) H(t2 ", g)./aq(u).
In our proo of Lemma 2.4, the notions of Newton polyhedra and

Minkowski sum of convex polytopes are essential. In fact, there exists a
finite rational convex polyhedron K in . bounded by the hyperplanes
(], Z)_C, Cz e R for Z e Y and satisfying the following" i) z/(9), A(b;)K,
where z/() denotes the Newton polyhedron of e . ii) Let S be the
convex hull of the set o points e such that +l(b[)K. We denote
by C(tg} the linear space spanned by t,, ] e 2 V/ for a subset
Then the map from e C(S}+ to C(K}"

(,,z)>o

(2.14) {(+z)r (c).,}. >’= c9+r {(Q-Zb-)-uZbQZ)+
(,z)>O (,,z)>o
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is surjective, where c e C.
Lemma 2.1 can be proved similarly.
Remark. When q tends to 1, then al(u;L, L’) and al(u) lecome ideals

in _L. However (--dim./a(u)) does not equal n! times the Minkowski
mixed volume % o the Newton polyhedra A(b;), l_]_n. We cannot
apply Bernshtein’s theorem (see [4]) to our case since a(u) and a(u;L, L’)
are degenerate, dim/a(u) is generally smaller than nv. The latter
depends on the choice of the basis , ..., Z. It seems interesting to give
a geometric meaning to .

3. Example.

(a.$/t), for t0= 1 and m= (nX).(i) =7:?0< (a.tlt)
or kl (we put,0=0). [ff,, ., ff]= 1, or 0. y=xff(Zr)ff(z) equal n
or -1 according as r=s or rCs. is then equal to (n+l)-’. This case
has been investigated in more detail in [2].

(a,t/t)(b t,t) =n(ii) @=H=xt (ao,t) H<< m and j=Z

Z()Z(Z) (2n-- 1),. Hence (2n- 1). This case satisfies Assumptions
1-4 which implies dim H(9 ",

It seems interesting to evaluate the resultants Go(u a, a’) for these two
cases.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

References

K. Aomoto" Les quations aux differences linares et les intgrales des fonctions
multiformes. J. Fac. Sci. Univ. of Tokyo, 22, 271-297 (1975)

Finiteness of a cohomology associated with certain Jackson integrals (to
appear in Tohoku J. of Math.).

__m: q-analogue of de Rham cohomology associated with Jackson integrals. I.
Proc. Japan Acad., 66A, 161-164 (1990.).

D. N. Bernshtein: The number of roots of a system of equations. Funct. Anal.
and Its Appli., 9, 183-185 (19’75).

V. I. Danilov: The geometry of toric varieties. Russ. Math. Surveys, 33, 97-154
(1978).

G. B. Dantzig" Linear programming and extensions. Princeton (1963).
A. G. Khovanskii: Newton polyhedra and toroidal varieties. Funct. Anal. and Its

Appli., 11, 56-57 (1977).
M. Kita and M. Noumi: On the structure of cohomology groups attached to the
integral of certain many-valued analytic functions. Japan J. Math., 9, 113-157
(1983).

A. G. Kouchnirenko" Poly.dres de Newton et nombres de Milnor. Invent. Math.,
32, 1-31 (1976).

T. Oda: Convex bodies and algebraic geometry. An introduction to. the theory
of toric varieties. Ergebnisse der Math., Springer (1988).

S. Smale: Algorithms for solving equations. Proc. Internat. Congress of Math.,
Berkley, Cal. (1986).


