63. q-analogue of de Rham Cohomology Associated with Jackson Integrals. II

By Kazuhiko Аомото
Department of Mathematics, Nagoya University
(Communicated by Kunihiko Kodaira, m. J. A., Oct. 12, 1990)

We follow the same terminologies as in Part I (see [3]).

1. Critical points and corresponding stable q-cycles. We assume for simplicity that q is real such that $0<q<1$. We put $\alpha=N \eta+\alpha^{\prime}$ and study the asymptotic behaviour of Jackson integrals $\langle\varphi\rangle, \varphi \in V$, for $N \rightarrow+\infty, \eta \in \check{X}$ and $\alpha^{\prime} \in C^{n}$ being fixed. Since $\Phi(t)=\left(t^{\eta}\right)^{N} \cdot t^{\alpha} \cdot \Pi_{j=1}^{m} \frac{\left(a_{j}^{\prime} t^{\mu_{j}}\right)_{\infty}}{\left(a_{j} t^{\mu}\right)_{\infty}}$, the major part of $|\Phi|$ is played by the absolute value $\left|t^{\eta}\right|$ for $N \rightarrow+\infty$. |t $\eta \mid$ attains a maximum if and only if the level function $L_{\eta}\left(\log _{q} t\right)=\operatorname{Re}\left(\eta, \log _{q} t\right)$ is a minimum, where (η, λ) denotes $\eta(\lambda)$ for $\lambda \in X_{C}=X \otimes C$.

We are going to search for points $t=q^{\lambda}$ in \bar{X} for $\lambda \bmod \frac{2 \pi i}{\log q} X$ satisfying the following 2 properties:
(i) $\log _{q} a_{j}^{\prime}+\left(\mu_{j}, \lambda\right) \equiv 1,2,3, \cdots \bmod \frac{2 \pi i}{\log q} Z$, for $j \in J$, J being a set of n arguments in $\{ \pm 1, \pm 2, \cdots, \pm m\}$ such that $\mu_{j}, j \in J$, are linearly independent in $\check{X}_{\boldsymbol{R}}=\check{X} \otimes \boldsymbol{R}$. We denote by \bar{X}_{J} the countable set in \bar{X} consisting of these points t.
(ii) $L_{\eta}(\lambda)$ attains a minimum on the subset of \bar{X}_{J} consisting of the points which are X-equivalent to $\lambda \bmod \frac{2 \pi i}{\log q} X$.

This is a very special case of linear programming problem investigated in [6] or [11].

We say that a point $t=q^{2}$ satisfying (i) and (ii) is a critical point with respect to the level function $L_{\eta}(\lambda)$. We denote by $C r_{J}=C r_{J}\left(L_{\eta}\right)$ the set of all critical points in \bar{X}_{J} and by $C r\left(L_{\eta}\right)$ the union $\cup_{J} C r_{J}\left(L_{\eta}\right)$.

Now we make the following assumptions of genericity.
Assumption 1. For each J, the set $C r_{J}$ is finite or empty. We denote by κ_{J} its number:

$$
\begin{equation*}
C r_{J}\left(L_{\eta}\right)=\left\{\xi_{J}^{(1)}, \cdots, \xi_{J}^{\left(\xi_{J}\right)}\right\} \tag{1.1}
\end{equation*}
$$

Assume that $L_{\eta}\left(\xi_{J}^{(r)}\right) \neq L_{\eta}\left(\xi_{J}^{(s)}\right)$ for every pair $r, s, r \neq s$. Then κ_{J} turns out equal to $\left[\mu_{j_{1}}, \cdots, \mu_{j_{n}}\right]^{2}$ or 0 . We say that J is stable if $\kappa_{j}>0$.

Assumption 2. $a_{k}^{\prime} \xi^{\mu_{k}} \neq 1, q^{ \pm 1}, q^{ \pm 2}, \cdots$ for any $k \in\{ \pm 1, \cdots, \pm m\}-J$ and $\xi \in C r_{J}\left(L_{\eta}\right)$.

From these assumptions we see that, for each $J=\left\{j_{1}, \cdots, \pm j_{n}\right\}$,
$J \subset\{ \pm 1, \cdots, m\}$, the only one choice of signs $\left\{\varepsilon_{1} j_{1}, \cdots, \varepsilon_{n} j_{n}\right\}$ is stable for $\varepsilon_{\nu}=$ ± 1. This occurs if and only if

$$
\begin{equation*}
\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{n}\left[\mu_{j_{1}}, \cdots, \mu_{j_{n}}\right]>0, \quad \text { and } \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\left[\eta, \varepsilon_{1} \mu_{f_{1}}, \cdots, \varepsilon_{\nu-1} \mu_{j_{\nu-1}}, \varepsilon_{\nu+1} \mu_{j_{\nu+1}}, \cdots, \varepsilon_{n} \mu_{j_{n}}\right](-1)^{\nu-1}>0 \tag{1.3}
\end{equation*}
$$

for all ν. Hence the total number of critical points $\kappa=\#\left|\operatorname{Cr}\left(L_{\eta}\right)\right|$ is given by

$$
\begin{equation*}
\kappa=\sum_{J}\left[\mu_{j_{1}}, \cdots, \mu_{j_{n}}\right]^{2}=\operatorname{det}\left(\left(\sum_{j=1}^{m} \mu_{j}\left(\chi_{r}\right) \mu_{j}\left(\chi_{s}\right)\right)\right)_{1 \leq r, s \leq n} . \tag{1.4}
\end{equation*}
$$

Under the above 2 assumptions, deduce the crucial
Lemma 1.1. A point $t=q^{\lambda}$ in the algebraic torus \bar{X} is critical for $L_{\eta}(\lambda)$ if and only if

$$
\begin{equation*}
b_{z}^{-}\left(q^{2-x}\right)=0 \tag{1.5}
\end{equation*}
$$

for any $\chi \in X$ such that $(\eta, \chi)>0$.
In fact, suppose that q^{λ} is an element of $C r_{J}\left(L_{\eta}\right)$. Then for each $\chi \in X$ such that $(\eta, \chi)>0$, we may assume that there exist a non-empty subset K of J such that $\mu_{k}(\chi)>0$ for $k \in K$ and $\mu_{k}(\chi) \leq 0$ for $k \in J-K$. By Assumptions 1 and 2, we see that one of $\left(a_{k}^{\prime} t^{\mu_{k}} q^{-\mu_{k}(x)}\right)_{\mu_{k}(x)}$ vanishes for $k \in K$. Hence $\left.b_{\chi}^{-(}{ }^{2-x}\right)$ vanishes. Conversely, suppose (1.5) holds for all χ such that $(\eta, \chi)>0$. Then by Assumptions 1 and 2, one can find a subset $J=\left\{j_{1}, \cdots, j_{n}\right\}$ $\subset\{ \pm 1, \cdots, \pm m\}$ such that $q^{\lambda} \in \bar{X}_{J}$. If q^{2} is not itself critical, then there would exist $\chi \in X$ such that $(\eta, \chi)>0$ and $q^{2-x} \in \bar{X}_{J}$. Hence $b_{\chi}^{-}\left(q^{2-x}\right) \neq 0$ which is a contradiction.

Definition 1. We denote by $\mathfrak{c}(\xi)$ the set of all $t=\chi \cdot \xi, \chi \in X$, such that $L_{\eta}\left(\log _{q} t\right) \geq L_{\eta}\left(\log _{q} \xi\right)$ so that ξ is a minimum point in $\mathfrak{c}(\xi)$. We call such a $\mathfrak{c}(\xi)$ stable cycle if ξ is critical. There are κ stable cycles say $\mathfrak{c}\left(\xi^{(1)}\right), \cdots$, $c\left(\xi^{(k)}\right)$.

Since $\xi^{(r)}$ differ from each other, the following holds.
Lemma 1.2. There exist κ Laurent polynomials $\varphi_{r} \in \mathcal{L}, 1 \leq r \leq \kappa$, such that $\varphi_{r}\left(\xi^{(s)}\right)=\delta_{r, s}, 1 \leq s \leq \kappa$.

Definition 2. Suppose that $c\left(\xi^{(s)}\right)$ is determined by $J \subset\{ \pm 1, \cdots, \pm m\}$ such that $j_{1}<0, \cdots, j_{l}<0$ and $j_{l+1}>0, \cdots, j_{n}>0$. Then the integration $\int_{c\left(\xi^{(s)}\right)} \Phi \varphi \widetilde{\sigma}, \varphi \in V$, is generally impossible because Φ has poles on $\mathfrak{c}\left(\xi^{(s)}\right)$. We must replace Φ by another Φ^{\prime} after the substitutions T_{j} in (1.4) of Part I for $j=j_{1}, \cdots, j_{l}$ so that $\int_{c(\xi(s))} \Phi^{\prime} \varphi_{r} \widetilde{\infty}$ is well defined. We shall call this modification the regularization of integration of Φ and denote it by reg $\int_{c(\xi(s))} \Phi \varphi_{r} \widetilde{\sigma}$.

Lemma 1.3.

$$
\begin{equation*}
\operatorname{det}\left(\left(\operatorname{reg} \int_{c(\xi(s))} \Phi \varphi_{r} \widetilde{\sigma}\right)\right)_{1 \leq r, s \leq r} \neq 0 \tag{1.6}
\end{equation*}
$$

This fact follows from the asymptotic behaviours of $\left\langle\varphi_{1}\right\rangle, \cdots,\left\langle\varphi_{k}\right\rangle$. Indeed, we may assume that $j_{1}>0, \cdots, j_{n}>0$ for $c\left(\xi^{(s)}\right)$, since the regularized ones are reduced to this case. Then for $N \rightarrow+\infty$.

$$
\begin{equation*}
\int_{c(\xi(s))} \Phi \varphi_{r} \widetilde{\sigma} \sim(1-q)^{n} \delta_{r, s}\left(\xi^{(s)}\right)^{\alpha} \Pi_{j=1}^{m} \frac{\left(a_{j}^{\prime}\left(\xi^{(s)}\right)^{\mu_{j}}\right)_{\infty}}{\left(a_{j}\left(\xi^{(s)}\right)^{\mu_{j}}\right)_{\infty}} \cdot\left(1+O\left(\frac{1}{N}\right)\right), \tag{1.7}
\end{equation*}
$$

where $\Pi_{j=1}^{m} \frac{\left(a_{j}^{\prime}\left(\xi^{(s)}\right)^{\mu_{j}}\right)_{\infty}}{\left(a_{j}\left(\xi^{(s)}\right)^{\mu_{j}}\right)_{\infty}} \neq 0$ by Assumption 2. Hence the lemma.
As a result, $\varphi_{1}, \cdots, \varphi_{k}$ are linearly independent in $H^{n}\left(\Omega^{*}, \nabla\right)$, which implies

$$
\begin{equation*}
\operatorname{dim} H^{n}\left(\Omega^{\prime}, \nabla\right) \geq \kappa . \tag{1.8}
\end{equation*}
$$

2. Upper estimate of $\operatorname{dim} H^{n}\left(\Omega^{\prime}, \nabla\right)$. By change of basis we may assume that $\mu_{j}\left(\chi_{r}\right) \geq 0$ for all j and r. In fact there exists a basis $\left\{\chi_{1}, \cdots, \chi_{n}\right\}$ such that, $\mu_{j}\left(\chi_{1}\right)>0$ for all j. The $\chi_{1}^{\prime}=\chi_{1}, \chi_{2}^{\prime}=l \chi_{1}+\chi_{2}, \cdots, \chi_{n}^{\prime}=l \chi_{1}+\chi_{n}$ form a basis if $l \in Z$ is sufficiently large and $\mu_{j}\left(\chi_{1}^{\prime}\right)>0$ for all j and r. We also assume $\left(\eta, \chi_{r}\right)>0$ for all r.

We take a $\psi \in \mathcal{L}$. Since

$$
\begin{equation*}
\nabla^{x} \psi=\psi-u^{x} \frac{b_{x}^{+}(t)}{b_{x}^{-}(t)} Q^{x} \psi \tag{2.1}
\end{equation*}
$$

$\nabla^{\chi} \psi \in \mathcal{L}$ if $b_{x}^{-}(t) \mid Q^{x} \psi(t)$, i.e. $\psi(t)=\left(Q^{-x} b_{\alpha}^{-}(t)\right) \cdot \bar{\psi}, \bar{\psi} \in \mathcal{L}$, we have
(2.2)

$$
\nabla^{x} \psi=\left(Q^{-x} b_{x}^{-}(t)\right) \cdot \bar{\psi}(t)-u^{x} b_{x}^{+}(t) \cdot\left(Q^{x} \bar{\psi}(t)\right) .
$$

We denote by $\mathfrak{a}_{q}(u)$ the subspace of \mathcal{L} consisting of $\nabla^{x} \psi$ of (2.2)

$$
\begin{align*}
\mathfrak{a}_{q}(u) & =\sum_{x \in x}\left\{\left(Q^{-x} b_{x}^{-}(t)\right)-u^{x} b_{x}^{+}(t) \cdot Q^{x}\right\} \mathcal{L} \tag{2.3}\\
& =\sum_{\substack{x \in Y \\
(\eta, x)>0}}\left\{\left(Q^{-x} b_{x}^{-}(t)\right)-u^{x} b_{x}^{+}(t) \cdot Q^{x}\right\} \mathcal{L}
\end{align*}
$$

where Y denotes the set of corner vectors spanning the fan F^{*} defined in Part I, [3]. In the same way we define the subspaces $\mathfrak{a}_{q}\left(u ; L, L^{\prime}\right)$ for a sequence (L, L^{\prime}) of non-negative integers $\left(l_{1}, \cdots, l_{n}, l_{1}^{\prime}, \cdots, l_{n}^{\prime}\right)$ as follows:

$$
\begin{align*}
\mathfrak{a}_{q}\left(u ; L, L^{\prime}\right)= & \sum_{x \in Y}\left[Q_{a_{j}}^{l_{j}^{\prime}} \bar{\alpha}_{a_{j}}^{-l_{j} j}\left\{\left(Q^{-x} b_{x}^{-}(t)\right)-u^{\chi} b_{x}^{+}(t) Q^{x}\right\}\right] \mathcal{L} \tag{2.4}\\
& +\sum_{l_{j}>0}\left(1-a_{j} q^{-l_{j} t^{\mu}}\right) \mathcal{L}+\sum_{l^{\prime}>0}\left(1-a_{j}^{\prime} q^{l_{j}^{\prime-1}} t^{\mu_{j}}\right) \mathcal{L} .
\end{align*}
$$

Remark that $\mathfrak{a}_{q}(u ;\{0\},\{0\})$ coincides with $\mathfrak{a}_{q}(u)$ itself. We define the ideals in \mathcal{L} by taking $u^{x} \rightarrow 0$ (i.e. $u \rightarrow 0$) for ($\left.\eta, \chi\right)>0$:

$$
\begin{align*}
& \mathfrak{a}_{q}(0)=\sum_{\substack{x \in X \\
(\eta, x)>0}}\left(Q^{-x} b_{\alpha}^{-}(t)\right) \mathcal{L}=\sum_{\substack{x \in Y \\
(\eta, x)>0}}\left(Q^{-x} b_{x}^{-}(t)\right) \mathcal{L}, \tag{2.5}\\
& \mathfrak{a}_{q}\left(0 ; L, L^{\prime}\right)= \sum_{\substack{x \in Y \\
(\eta, x)>0}}\left(\Pi_{j=1}^{m} Q_{a_{j}^{\prime}}^{l_{j}^{\prime}} Q_{a_{j}}^{-l_{j}}\right)\left(Q^{-x} b_{x}^{-}(t)\right) \mathcal{L} \\
& \quad+\sum_{l_{j}^{\prime}>0}\left(1-a_{j}^{l_{j}^{\prime-1}} t^{\mu_{j}}\right) \mathcal{L}+\sum_{l_{j}>0}\left(1-a_{j} q^{\left.-l_{j} t^{\mu_{j}}\right)}\right) \mathcal{L} .
\end{align*}
$$

Then $\mathfrak{a}_{q}\left(0 ; L, L^{\prime}\right)$ is identical with \mathcal{L} itself provided $\sum_{j=1}^{m}\left(l_{j}+l_{j}^{\prime}\right)>0$. Furthermore

Lemma 2.1. There exists a non-zero Laurent polynomial $G\left(u \mid a, a^{\prime}\right)$ in $u_{j}, a_{j}, a_{j}^{\prime}$ such that
(2.7) $\quad \Pi_{x^{\prime}} G\left(u q^{x^{\prime}} \mid a, a^{\prime}\right) t^{x} \equiv 0 \bmod \mathfrak{a}_{q}\left(u ; L, L^{\prime}\right)$, for $\chi \in X$,
provided $\sum_{j=1}^{m}\left(l_{j}+l_{j}^{\prime}\right)>0$, where χ^{\prime} moves over the set of all points $\chi^{\prime}=$ $\sum_{j=1}^{n} \nu_{j}^{\prime} \chi_{j}$ such that $\nu_{1}^{\prime}=\nu_{1}, \cdots, \nu_{j-1}^{\prime}=\nu_{j-1}, 0 \leq \nu_{j}^{\prime} \leq \nu_{j}$ or $\nu_{j} \leq \nu_{j}^{\prime} \leq 0$, and $\nu_{j+1}^{\prime}=$ $\nu_{j+1}, \cdots, \nu_{n}^{\prime}=\nu_{n}$.

We now make the assumption
Assumption 3. $G\left(u q^{\chi} \mid a, a^{\prime}\right) d o n^{\prime} t$ vanish for any $\chi \in X$.
Then from Lemma 2.1, we have
Lemma 2.2. Under Assumptions 1-3, $\mathfrak{a}_{q}\left(u ; L, L^{\prime}\right)=\mathcal{L}$ for all $\left(L, L^{\prime}\right)$ such that $\sum_{j=1}^{m}\left(l_{j}+l_{j}^{\prime}\right)>0$, whence the morphism

$$
\begin{equation*}
\mathcal{L} / \mathfrak{a}_{q}(u) \rightarrow H^{n}(\Omega \cdot, \nabla) \longrightarrow 0 \tag{2.8}
\end{equation*}
$$

is exact.
In fact every element φ in (1.6) of Part I can be expressed by $\nabla \psi+\varphi^{\prime}$ for $\psi \in \Omega^{n-1}$ and $\varphi^{\prime} \in V, \varphi^{\prime}$ having the same form such that $\sum_{j=1}^{m}\left(l_{j}+l_{j}^{\prime}\right)$ is smaller. By decreasing induction on $\sum_{j=1}^{m}\left(l_{j}+l_{j}^{\prime}\right)$, one deduce the surjectivity (see the reduction argument in [1])

$$
\begin{equation*}
\mathcal{L} / \mathcal{L} \cap \nabla \Omega^{n-1} \longrightarrow H^{n}(\Omega \cdot, \nabla) \longrightarrow 0 \tag{2.9}
\end{equation*}
$$

The lemma follows from this because of the inclusion $\mathfrak{a}_{q}(u) \subset \mathcal{L} \cap \nabla \Omega^{n-1}$.
As an immediate consequence we have
Corollary to Lemma 2.2. $\operatorname{dim} \mathcal{L} / \mathfrak{a}_{q}(u) \geq \operatorname{dim} H^{n}(\Omega \cdot, \nabla)$.
Lemma 2.3. $\operatorname{dim} \mathcal{L} / \mathfrak{a}_{q}(0)=\kappa . \quad$ The zeros of $\mathfrak{a}_{q}(0)$ in \bar{X} satisfy the equations in \bar{X}

$$
\begin{equation*}
Q^{-x} b_{\chi}^{-}(t)=0, \quad \chi \in X, \tag{2.10}
\end{equation*}
$$

such that $(\eta, \chi)>0$ and vice versa. Hence they coincide with the set of critical points $C r\left(L_{\eta}\right)$ for the function $\Phi(t)$ (see (1.5)). The number of such points is equal to κ.

The subspace $\mathfrak{a}_{q}(u)$ can be regarded as a $C\left[\left.u^{\chi}\right|_{x \in X,(\eta, x)>0}\right]$-module in $C\left[\left.u^{x}\right|_{x \in X,(\eta, x)>0}\right] \otimes \mathcal{L}$. Then $\mathcal{L} / \mathfrak{a}_{q}(u)$ being a perturbation of $\mathcal{L} / \mathfrak{a}_{q}(0)$ from $u=0$ to $u \neq 0$, the inequality for the semi-continuity of dimension holds under the finiteness condition. Indeed, let \mathfrak{G} be the linear subspace of \mathcal{L} spanned by $\varphi_{1}, \cdots, \varphi_{k}$ as in Lemma 1.2. Similarly like Lemma 2.1 we have

Lemma 2.4. There exists a Laurent polynomial $G_{0}\left(u \mid a, a^{\prime}\right)$ in u_{j}, a_{j} and a_{j}^{\prime} which is a resultant of $\mathfrak{a}_{q}(u)$ with respect to the basis \mathfrak{h} such that $G_{0}\left(0 \mid a, a^{\prime}\right)$ is not identically zero and that
(2.11) $\quad G_{0}\left(u \mid a, a^{\prime}\right) t_{r}^{ \pm 1} \varphi_{j}(t) \equiv 0 \bmod \left(\mathfrak{h}+\mathfrak{a}_{q}(u)\right)$.
for all $1 \leq r \leq n, 1 \leq j \leq \kappa$.
Hence under the additional assumption
Assumption 4. $G_{0}\left(u q^{x} \mid a, a^{\prime}\right) \neq 0$ for all $\chi \in X$,
Lemma 2.5. $\operatorname{dim} \mathcal{L} / \mathfrak{a}_{q}(u) \leq \kappa$.
From Corollary to Lemma 2.2
(2.12)
$\operatorname{dim} H^{n}(\Omega \cdot, \nabla) \leq \kappa$.
From (1.8) and from (2.12)
Theorem. Under Assumptions 1-4, we have $\operatorname{dim} H^{n}(\Omega \cdot, \nabla)=\kappa$ and

$$
\begin{equation*}
H^{n}(\Omega \cdot, \nabla) \simeq \mathcal{L} / a_{q}(u) \tag{2.13}
\end{equation*}
$$

In our proof of Lemma 2.4, the notions of Newton polyhedra and Minkowski sum of convex polytopes are essential. In fact, there exists a finite rational convex polyhedron K in \check{X}_{R} bounded by the hyperplanes $(\eta, \chi) \leq C_{\chi}, C_{\chi} \in R$ for $\chi \in Y$ and satisfying the following: i) $\Delta\left(\varphi_{j}\right), \Delta\left(b_{\chi}^{ \pm}\right) \subset K$, where $\Delta(\varphi)$ denotes the Newton polyhedron of $\varphi \in \mathcal{L}$. ii) Let S_{x} be the convex hull of the set of points $\lambda \in \check{X}_{R}$ such that $\lambda+\Delta\left(b_{\chi}^{-}\right) \subset K$. We denote by $C\langle\Omega\rangle$ the linear space spanned by $t^{\eta}, \eta \in \Omega \cap \bar{X}$ for a subset Ω in \check{X}_{R}. Then the map \subset from $\sum_{\substack{x \in Y \\(\eta, x)>0}} C\left\langle S_{x}\right\rangle+\mathfrak{h}$ to $C\langle K\rangle$:

$$
\begin{equation*}
\underset{\substack{(\eta, x)>0}}{\left\{\left(\psi_{x}\right)_{x \in Y},\left(c_{j}\right)_{1 \leq j \leq x}\right\} \longrightarrow \sum_{j=1}^{k} c_{j} \varphi_{j}+\sum_{\substack{x \in Y \\(\eta, x)>0}}\left\{\left(Q^{-x} b_{x}^{-}\right)-u^{x} b_{x}^{+} Q^{x}\right) \psi_{x}} \tag{2.14}
\end{equation*}
$$

is surjective, where $c_{\jmath} \in \boldsymbol{C}$.
Lemma 2.1 can be proved similarly.
Remark. When q tends to 1 , then $\mathfrak{a}_{1}\left(u ; L, L^{\prime}\right)$ and $\mathfrak{a}_{1}(u)$ become ideals in \mathcal{L}. However $\kappa\left(=\operatorname{dim} \mathcal{L} / \mathfrak{a}_{1}(u)\right)$ does not equal $n!$ times the Minkowski mixed volume v_{n} of the Newton polyhedra $\Delta\left(b_{x_{j}}^{-}\right), 1 \leq j \leq n$. We cannot apply Bernshtein's theorem (see [4]) to our case since $\mathfrak{a}_{1}(u)$ and $\mathfrak{a}_{1}\left(u ; L, L^{\prime}\right)$ are degenerate. $\operatorname{dim} \mathcal{L} / \mathfrak{a}_{1}(u)$ is generally smaller than $n!v_{n}$. The latter depends on the choice of the basis $\chi_{1}, \cdots, \chi_{n}$. It seems interesting to give a geometric meaning to κ.
3. Example.
(i) $\Phi=\Pi_{j=1}^{n} t_{j}^{\alpha_{j}} \Pi_{0 \leq i<j \leq n} \frac{\left(\alpha_{i, j}^{\prime} t_{j} / t_{i}\right)_{\infty}}{\left(a_{i, j} t_{j} / t_{i}\right)_{\infty}}$, for $t_{0}=1$ and $m=\binom{n+1}{2} . \mu_{j}(\chi)=\nu_{k}-\nu_{l}$ for $k \neq l$ (we put $\nu_{0}=0$). $\quad\left[\mu_{f_{1}}, \cdots, \mu_{j_{n}}\right]= \pm 1$, or 0 . $\quad \sum_{j=1}^{m} \mu_{j}\left(\chi_{r}\right) \mu_{j}\left(\chi_{s}\right)$ equal n or -1 according as $r=s$ or $r \neq s$. κ is then equal to $(n+1)^{n-1}$. This case has been investigated in more detail in [2].
(ii) $\quad \Phi=\Pi_{j=1}^{n} t_{j}^{\alpha_{j}} \frac{\left(a_{0, j}^{\prime} t_{j}\right)_{\infty}}{\left(a_{0, j} t_{j}\right)_{\infty}} \Pi_{1 \leq i<j \leq n} \frac{\left(a_{i, j}^{\prime} t_{j} / t_{i}\right)_{\infty}\left(b_{i, j}^{\prime} t_{i} t_{j}\right)_{\infty}}{\left(a_{i, j} t_{j} / t_{i}\right)_{\infty}\left(b_{i, j} t_{i} t_{j}\right)_{\infty}} . \quad m=n^{2}$ and $\sum_{j=1}^{m}$ $\mu_{j}\left(\chi_{r}\right) \mu_{j}\left(\chi_{s}\right)=(2 n-1) \dot{\delta}_{r, s}$. Hence $\kappa=(2 n-1)^{n}$. This case satisfies Assumptions 1-4 which implies $\operatorname{dim} H^{n}(\Omega \cdot, \nabla)=\kappa$.

It seems interesting to evaluate the resultants $G_{0}\left(u \mid a, a^{\prime}\right)$ for these two cases.

References

[1] K. Aomoto: Les équations aux différences linéares et les intégrales des fonctions multiformes. J. Fac. Sci. Univ. of Tokyo, 22, 271-297 (1975)
[2] --: Finiteness of a cohomology associated with certain Jackson integrals (to appear in Tohoku J. of Math.).
[3] --: q-analogue of de Rham cohomology associated with Jackson integrals. I. Proc. Japan Acad., 66A, 161-164 (1990).
[4] D. N. Bernshtein: The number of roots of a system of equations. Funct. Anal. and Its Appli., 9, 183-185 (1975).
[5] V. I. Danilov: The geometry of toric varieties. Russ. Math. Surveys, 33, 97-154 (1978).
[6] G. B. Dantzig: Linear programming and extensions. Princeton (1963).
[7] A. G. Khovanskii: Newton polyhedra and toroidal varieties. Funct. Anal. and Its Appli., 11, 56-57 (1977).
[8] M. Kita and M. Noumi: On the structure of cohomology groups attached to the integral of certain many-valued analytic functions. Japan J. Math., 9, 113-157 (1983).
[9] A. G. Kouchnirenko: Polyèdres de Newton et nombres de Milnor. Invent. Math., 32, 1-31 (1976).
[10] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties. Ergebnisse der Math., Springer (1988).
[11] S. Smale: Algorithms for solving equations. Proc. Internat. Congress of Math., Berkley, Cal. (1986).

