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1. Introduction. Let k be an algebraically closed field of cha.rac-
teristic zero (sometimes let k----C). We denote by K a purely tra.nscen-
dental extension of k, and by L a. quadratic extension of K. If dim K---1
or equivalently if K--k(x), then L cn be expressed as K(y), where the
element y satisfies the equation y--(x-a)...(x-a+) with distinct a e k
(i=l, ..., 2n+l). The model of L is a rational, an elliptic or a hyperel-
liptic curve. In this note we consider the similar subject in the case
when dim K=2. Suppose K= k(x, y) and let S be a. nonsingular model of
L. Then we will study the structure of S from the birational viewpoint.
Details will a.ppea.r elsewhere. The uthor would like to tha.nk Prof.
F. Sakai for valuable informations. We use the following notations"

p p(S) dim H2(S, (), q-- q(S) dim Hi(S, )),
c=c(S)" the i-th Chern cla.ss of S (i=1, 2).

2. Theorems. First we obtain the following basic theorem by ma.k-
ing use of projective and sta.nda.rd Cremona transformations of P.

Theorem 1. We can find an element z e L and a polynomial f(x, y) e
k[x, y] satisfying the following conditio.ns

1 ) L-K(z), where z= f(x, y) and f is reduced.
(2) The degree of f is even and the curve f=0 in p2 has at most

ordinary singularities.
Let d=2e be the degree of f. We introduce new varia.bles z ha.ving

the gradations deg z=l (i---0, 1, 2) and deg z=e. Then, putting x=zl/Zo,
y=z/Zo, z=z/(Zo) a.nd F(zo, Zl, z2)-- f(z/Zo, z2/Zo)Zo, we get a. surfa.ce F
defined by the equation z]=F(zo, zx, z) in the weighted projective spa.ce
P(1, 1, 1, e). Let C be the pla,ne curve defined by the equation F(zo, z, z)
=0. Then we ha.ve a. double covering z" F--P branched along the curve
C. When C is. not smooth, let P (i=1, ..., r) be the singular point of C
and let m be the multiplicity of C at P. Let a" X--P be a. composition
of the blow-ups with the centers {PIi=I, ..., r}. Then let F’ be the
normalization of F e X. In case m is odd, let {PI]= 1, ., m} be the
points. C’fE, where C’ denotes the proper tra.nsform of C by a a.nd
E--a-(P). Let " Y-X be a composition of the blow-ups with the
centers {Plm is. odd}. Then, letting S be the normalization of F’x Y,
we obtain a double covering " SoY. Here we note that S is the mini-
mal resolution of F a.nd a. nonsingula.r model of L. Put n---[m/2], where

denotes the Gauss’ symbol. Then the geometric invaria.nts of S a.re
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given as ollows, where , stands for [__.
Lemma 2. (1) The canonical divisor of S is linearly equivalent to

*./*(a*((e-- 3)/)- (n- 1)E), where is a line in P. Hence
p-- dim H(X, a*((e--3)l)-- (n-- 1)E).

2 ) q=dim H(X, --D), where D=a*(el)- nE.
( 3 ) 2(p-- q)---- (e 1)(e 2) n(n 1).
(4) c 2{(e 3) (n-l)}.
(5) c=2{2d-ae+a- (2n-n-l)}.
From the existence of the double covering " S-+Y we infer the

following former assertion. The latter one is obtained from the above
lemma.

Theorem :. Abelian and hyperelliptic surfaces cannot be birationally
equivalent to double coverings of P. Except those every class in the En-
riques-Kodaira classification can appear as a model of L.

Theorem 4. If e4-b__(n--l), then S is a minimal surface of
general type. Moreover the inequality c/c 1/2 holds true for S.

By the vanishing theorem of Mumford [3] we obtain the following
Theorem 5. If e _1+= n,, then q O.
For a fixed number m, let q be the set

fsIS is a surface obtained as above for some L andS,
the branch-locus C satisfies ,[__ m, m.

Note that, for some L, q may contain more than one surfaces which
are models of L. But, by Theorem 4, if e is large enough, then S is
determined uniquely by L. By Theorems 4 and 5, we obtain the following

Theorem 6. The surface S e q is a minimal surface of general type
with q=0 for every sufficiently large d and the equality lim c/c--1/2
holds true for the elements of .

Remark 7. (1) In the case of special triple coverings of P treated
in [4], we have that lim c/c=2/3.

(2) For a fixed number n, let be the set consisting of surfaces
{S}, where S is an n-cyclic covering of P branched along a nonsingular
curve of degree dn. Then S is a minimal surface of general type if
(n-- 1)d> 3. We infer readily that lim c/c (n- 1)/n or the elements
of .

:. Examples. For each d let us, describe the structure of S.
( 1 ) d:2" S is a rational surface.
(2) d--4, (2-1)" IfC land=

__
l is one point, where l is a

line, then S is a ruled surface with q= 1. (2-2)" Otherwise S is a rational
surface.

(3) d=6,(3-1)" If m,

_
3 for all i, thenS is aK3surface. (3-2)’

Otherwise S is a ruled surface with 2q +2---- n,(n,--1).
(4) d:>8, (4-1)" If r=O, then S is a minimal surface of general

type. (4-2)" If r-=l and e_n=n_e-1, then S is. a ruled surface with
2q n(n--1) (e --1) (e 2). (4--3)" If r=l and n=e--2, then S is. a
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minimal properly elliptic surface with p=e--2 a.nd q--0. (See, or the
definition, [1, p. 189].) (4-4)" If r=l and n_e-3, then S is a minimal
surface of general type..

Here we present more concrete exa.mples.
Example 8. Let f--y+x and f=x+y. Put f--f+f (]=3,

.., m), where we assume tha.t afl=/=0 a.nd a,fl=/=afl, if i=/=]. Let f---f
f, then d=am, r=a a.nd m,=m.
(I) In case m=2h, the classification is as. ollows"

( ) If a=2, then S is a ruled surface with q h-1.
(ii) If a=3, then S is. a. minimal properly elliptic surface.
(iii) If a_4, then S is a minimal surface of general type. When h

[resp. a.] is fixed, lim_ c/c=(2h-1)/(h+ 1) [resp. lim_ c/c=2].
(II) In case m=2h+l and a=2b, then q=.O and the classification is

as follows"
) If b=l, then S is. a minimal properly elliptic surface.

(ii) If b___2, then S is a minimal surface of general type. When
h [resp. b] is fixed, lim c/c (4h-1)/(4h+2) [resp. lim c/c
(25-2)/(25-1)].
Example 9. Let {/,} be four lines whose a.rra,ngement is described in

the figure below. We ca.n find an irreducible plane curve Co sa.tisfying
the following conditions" The degree of Co is 8 and the reducible curve
C-Co [jl [J... [Jl has only ordinary singular points P, (i1, ..., 6) with

m=m=6 and m m=4. Let S be the double covering obtained from
C by the procedure sta.ted in section 2. From Lemma 2 we see that
c=--6 and p=q, but we ca.n find 6 exceptional curves on S. Contract-
ing these curves, we get the minimal surface on which the bicanonical
divisor is linearly equivalent to 0. It turns out that it is an Enriques
surface.

P
l p p

4. Application. Finally we mention a.n a.pplication to the theory of
pla.ne curves. For given numerical cha.racters satisfying the genus or-
mula, a cuspidal rational curve with the characters does not necessa.rily
exist (see, [2] a,nd [4]). But in case the singula.rity is ordinary, a simila.r
fact does not seem to be known. Let C be a.n irreducible rational curve of
degree 2e. Suppose that C has ordinary singular points with the same
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multiplicity 2n. Then we have (2e--1)(2e--2)--2n(2n--1)r. Note that in
case n= 1 (i.e., the singularity is a node), such curves exist for any e (see,
[5, Theorem 4 in p. 216]). But in the case n_3 such curves do not always
exist. In act, suppose that C defines, a surface of general type S and let
So be the minimal model. Then we have that (c+)/(c-)_3 by the
Miyaoka-Yau’s inequality, where =c(So)-c(S). Hence we infer from
Lemma 2 the following

Theorem 10. In case e3n+ 1, then S is a surface of general type.
Furthermore the following inequality holds true.

(3n- 8)e (9n 12)e+ 5n n 4

_
0.

In particular we have that
( ) if n=3, then e_68,
(ii) if n_34, then e

_
3n+8.

Question 11. We do not know whether the inequality above is the
best possible one. For example we do not know whether a curve with
23_e_68 and n-3 exists. If such a curve exists, then for the minimal
model of S the inequality c1/c_2 holds rue (see, [1, p. 229]).

References

1] W. Barth, C. Peters and A. Van de Ven: Compact Complex Surfaces. Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge Band 4, Springer-Verlag,
Berlin, Heidelberg, New York, Tokyo (1984).

2 T. Matsuoka and F. Sakai: The degree of rational cuspidal curves. Math. Ann.,
285, 233-247 (1989).

3] Y. Miyaoka" On the Mumford-Ramanujam vanishing theorem on a surface.
Journes de Gometrie Algbrique d’Angers. Sijthoff and Noordhoff, Alphen
aan den Rijn, pp. 239-247 (1980).

4 H. Yoshihara: Plane curves whose singular points are cusps and triple coverings
of P. Manuscripta Math., 64, 169-187 (1989).

5 O. Zariski: Algebrais Surfaces. 2nd supplemented edition. Ergebnisse der Mathe-
matik und ihrer Grenzgebiete. Band 61, Springer-Verlag, Berlin, Heidelberg,
New York (1971).


