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1. Introduction. Let k be an algebraically closed field of charac-
teristic zero (sometimes let k=C). We denote by K a purely transcen-
dental extension of %, and by L a quadratic extension of K. If dim,K=1
or equivalently if K=Fk(x), then L can be expressed as K(y), where the
element y satisfies the equation ¥*=(x—a,)- - - (x—a,,,,) With distinet a, ek
(=1, ---,2n+1). The model of L is a rational, an elliptic or a hyperel-
liptic curve. In this note we consider the similar subject in the case
when dim, K=2. Suppose K=Fk(z, y¥) and let S be a nonsingular model of
L. Then we will study the structure of S from the birational viewpoint.
Details will appear elsewhere. The author would like to thank Prof.
F. Sakai for valuable informations. We use the following notations:

p,=p,(S)=dim H*S, 0), ¢=q(S)=dim H(S, O),
¢,=¢,(S): the i-th Chern class of S (i=1, 2).

2. Theorems. First we obtain the following basic theorem by mak-
ing use of projective and standard Cremona transformations of P2

Theorem 1. We can find an element z € L and a polynomial f(x,y) e
klz, y] satisfying the following conditions:

(1) L=K(z), where 2*= f(x,y) and f is reduced.

(2) The degree of f is even and the curve f=0 in P* has at most
ordinary singularities.

Let d=2e be the degree of f. We introduce new variables 2z, having
the gradations deg 2,=1 (i=0, 1, 2) and deg z;=e. Then, putting x=2,/z,
Y=2y /2, 2=2,/(2)° and F(z,, 2, 25)=f(2,/ 2, #:/2)2;, We get a surface F
defined by the equation z=F(z, 2,, 2z,) in the weighted projective space
P(1,1,1,e). Let C be the plane curve defined by the equation F(z,, z,, 2.)
=0. Then we have a double covering r: F—P? branched along the curve
C. When C is not smooth, let P, (i=1, -- -, r) be the singular point of C
and let m, be the multiplicity of C at P,. Let ¢: X—P* be a composition
of the blow-ups with the centers {P;|i=1, ---,7}. Then let F’ be the
normalization of F' X p, X. In case m, is odd, let {P,;|j=1, ---, m,} be the
points C’'NE,, where C' denotes the proper transform of C by ¢~ and
E,=¢'(P). Let p: Y—>X be a composition of the blow-ups with the
centers {P,,|m, is odd}. Then, letting S be the normalization of F'x Y,
we obtain a double covering #: S—Y. Here we note that S is the mini-
mal resolution of F' and a nonsingular model of L. Put n,=[m,/2], where
[ 1denotes the Gauss’ symbol. Then the geometric invariants of S are
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given as follows, where > stands for > 7_,.

Lemma 2. (1) The canonical divisor of S is linearly equivalent to
#* . ¥ (d*((e—3))— 2 (n,—1)E,), where l is a line in P*. Hence

p,=dim H(X, ¢*((e—3))— > (n,—1E).

(2) ¢q=dim H(X, —D), where D=g*(el)—>_ n,E,.

(3) 2@,—q)=(—D(e—2)—2 n(n,—1).

(4) ci=2{(e—3)"—2 (n,—1)"}.

(5) c=2{2e"—3e+3—> (2ni—n,—1)}.

From the existence of the double covering #: S—Y we infer the
following former assertion. The latter one is obtained from the above
lemma.

Theorem 3. Abelian and hyperelliptic surfaces cannot be birationally
equivalent to double coverings of P:. Except those every class in the En-
riques-Kodaira classtfication can appear as a model of L.

Theorem 4. If e>4+> 7 ,(n,—1), then S is a minimal surface of
general type. Moreover the inequality ¢/ c, <1/2 holds true for S.

By the vanishing theorem of Mumford [3] we obtain the following

Theorem 5. If e>1+> 7, n,, then ¢=0.

For a fixed number m, let S,, be the set

{S S is a surface obtained as above for some L and}
the branch-locus C satisfies > 7_, m, <m.

Note that, for some L, S,, may contain more than one surfaces which
are models of L. But, by Theorem 4, if e is large enough, then S is
determined uniquely by L. By Theorems 4 and 5, we obtain the following

Theorem 6. The surface S € S,, s a minimal surface of general type
with q=0 for every sufficiently large d and the equality lim,_., ¢}/c,=1/2
holds true for the elements of S,,.

Remark 7. (1) In the case of special triple coyerings of P* treated
in [4], we have that lim,_, ¢?/c,=2/3.

(2) For a fixed number n, let < be the set consisting of surfaces
{S}, where S is an n-cyclic covering of P? branched along a nonsingular
curve of degree dn. Then S is a minimal surface of general type if
(n—1)d>3. We infer readily that lim,_.. ¢}/c,;=(n—1)/n for the elements
of 4.

3. Examples. For each d let us describe the structure of S.

(1) d=2: 8Sis a rational surface.

(2) d=4, 2-1): If C=UJ:il, and Mi,l, is one point, where [, is a
line, then S is a ruled surface with ¢g=1. (2-2): Otherwise S is a rational
surface.

(3) d=6, (3-1): If m,<3 for all ¢, then S is a K3 surface. (3-2):
Otherwise S is a ruled surface with 2¢+2=73 n,(n,—1).

(4) d>8,(4-1): If r=0, then S is a minimal surface of general
type. (4-2): If r=1and e>n=mn,>e—1, then S is a ruled surface with
2g=nn—1)—(e—1)(e—2). (4—38): If r=1 and n=e—2, then S is a
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minimal properly elliptic surface with p,=e—2 and ¢=0. (See, for the
definition, [1, p. 189].) (“4-4): If r=1 and n<e—3, then S is a minimal
surface of general type.-----

Here we present more concrete examples.

Example 8. Let f,=y+2* and f,=2+y*. Put fi=a,/i+8,/2 (1=3,
-+, m), where we assume that «,8,#0 and «,8,#a,8, if 5. Let f=f,
-+« fn then d=am, r=a* and m,=m.

(I) In case m=2h, the classification is as follows:

(i) If a=2, then S is a ruled surface with ¢=h—1.

(ii) If a=3, then S is a minimal properly elliptic surface.

(iii) If a>4, then S is a minimal surface of general type. When %
[resp. a] is fixed, lim,_., ¢}/¢,=(2h—1)/(h+1) [resp. lim,_., ci/c,=2].

(II) In case m=2h+1 and a=2b, then ¢=0 and the classification is

as follows:
(i) If b=1, then S is a minimal properly elliptic surface.
(ii) If b>2, then S is a minimal surface of general type. When
h [resp. b] is fixed, lim,_., c}/c,= (4h—1)/(4h+2) [resp. lim,..ci/c,=
@2b—2)/2b-1)].

Example 9. Let {I,} be four lines whose arrangement is described in
the figure below. We can find an irreducible plane curve C, satisfying
the following conditions: The degree of C, is 8 and the reducible curve
C=C,ULU--- Ul has only ordinary singular points P, (i=1, - -, 6) with
m;=m,=6 and m,= - - -m;=4. Let S be the double covering obtained from
C by the procedure stated in section 2. From Lemma 2 we see that
¢i=—6 and p,=q, but we can find 6 exceptional curves on S. Contract-
ing these curves, we get the minimal surface on which the bicanonical
divisor is linearly equivalent to 0. It turns out that it is an Enriques
surface.

4. Application. Finally we mention an application to the theory of
plane curves. For given numerical characters satisfying the genus for-
mula, a cuspidal rational curve with the characters does not necessarily
exist (see, [2] and [4]). But in case the singularity is ordinary, a similar
fact does not seem to be known. Let C be an irreducible rational curve of
degree 2¢. Suppose that C has ordinary singular points with the same
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multiplicity 2n. Then we have (2e—1)(2¢—2)=2n(2n—1)r. Note that in
case n=1 (i.e., the singularity is a node), such curves exist for any e (see,
[5, Theorem 4 in p. 216]). But in the case »>38 such curves do not always
exist. In fact, suppose that C defines a surface of general type S and let
S, be the minimal model. Then we have that (¢i+06)/(c:—3)<8 by the
Miyaoka-Yau’s inequality, where d=c3(S,)—c3(S). Hence we infer from
Lemma 2 the following

Theorem 10. In case e>3n+1, then S is a surface of general type.
Furthermore the following inequality holds true.

Bn—8)e*—(In*—12)e+5n—n—4<0.
In particular we have that

(i) if n=38, then e<68,

(ii) if n>384, then e<3n+8.

Question 11. We do not know whether the inequality above is the
best possible one. For example we do not know whether a curve with
23<e<68 and n=3 exists. If such a curve exists, then for the minimal
model of S the inequality ¢?/¢,>>2 holds true (see, [1, p. 229]).
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