79. On Products of Consecutive Integers

By Shin-ichi Katayama
Department of Mathematics, College of General Education, Tokushima University
(Communicated by Shokichi Iyanaga, m. J. A., Dec. 12, 1990)

1. Diophantine equations involving products of integers have been investigated by many mathematicians. Among these are Erdös [1], L. J. Mordell [4], but these are the equations in two variables. In this paper, we shall show the following diophantine equation in three variables

$$
\begin{equation*}
x(x+1) y(y+1)=z(z+1) \tag{1}
\end{equation*}
$$

has infinitely many integer solutions and also show there exists an algorithm for obtaining all the integer solutions of (1).
2. In our previous paper [3], we have obtained the following result. We denote the set of all the integer solutions of a diophantine equation $z^{2}=\left(x^{2}-1\right)\left(y^{2}-1\right)+a(a \in Z)$ by S_{a}. Then it is easy to verify that the mappings

$$
\begin{gathered}
\sigma:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{c}
x \\
x y+z \\
\left(x^{2}-1\right) y+x z
\end{array}\right), \quad \tau:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{l}
y \\
x \\
z
\end{array}\right), \\
\rho_{1}:\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{c}
-x \\
y \\
z
\end{array}\right), \quad \rho_{2}:\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{c}
x \\
-y \\
z
\end{array}\right), \quad \rho_{3}:\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{c}
x \\
y \\
-z
\end{array}\right)
\end{gathered}
$$

are the permutations of S_{a}. G denotes the group $\left\langle\sigma, \tau,, \rho_{i}\right\rangle(1 \leqq i \leqq 3)$. We denotes the number of the representatives $\#\left[S_{a} / G\right]$ by t_{a}. Then we have obtained the following proposition.

Proposition (cf. [3]). The number t_{a} is finite except in case $a=0$, and t_{a} equals the number of the integer points contained in the set $S_{a} \cap R_{a}$, where

$$
R_{a}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): 0 \leqq x \leqq y \leqq \sqrt{\left(a+1-x^{2}\right) /(2 x+2)}, 0 \leqq z\right\} \quad \text { in case } a>0
$$

and

$$
R_{a}=\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right): 1<x \leqq y, 0 \leqq z, \sqrt{\left(x^{2}-a-1\right) /\left(x^{2}-1\right)} \leqq y \leqq \sqrt{\left(x^{2}-a-1\right) /(2 x-2)}\right\}
$$

in case $a<0$.
For the case $a=4$, we have $t_{a}=2$, that is, $S_{a}=G\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right) \cup G\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$. Con-
gruence consideration shows $G\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\left\{\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \in S_{a}: x \equiv y \equiv 1 \bmod 2\right.$ and $z \equiv 2$ $\bmod 4\}$, which will be denoted by S^{*}. We denote by T the set of all the integer solutions of (1). Then the mapping $f:\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \rightarrow\left(\begin{array}{l}2 x+1 \\ 2 y+1 \\ 4 z+2\end{array}\right)$ is a bijection from T to S^{*}. We denote $\sigma^{*}=f^{-1} \sigma f, \tau^{*}=f^{-1} \tau f$ and $\rho_{i}^{*}=f^{-1} \rho_{i} f$. Then we have

$$
\begin{aligned}
\sigma^{*}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \longrightarrow\left(\begin{array}{c}
x \\
2 x y+x+y+2 z+1 \\
2 x^{2} y+x^{2}+2 x y+2 x z+2 x+z
\end{array}\right), \\
\tau^{*}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & \longrightarrow\left(\begin{array}{c}
y \\
x \\
z
\end{array}\right), \quad \rho_{1}^{*}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{c}
-x-1 \\
y \\
z
\end{array}\right), \\
\rho_{2}^{*}:\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) & \longrightarrow\left(\begin{array}{c}
x \\
-y-1 \\
z
\end{array}\right) \text { and } \rho_{3}^{*}:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \longrightarrow\left(\begin{array}{c}
x \\
y \\
-z-1
\end{array}\right) .
\end{aligned}
$$

G^{*} denotes the group $\left\langle\sigma^{*}, \tau^{*}, \rho_{i}^{*}\right\rangle(1 \leqq i \leqq 3)$. Then we have $T=G^{*}\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, that is, G^{*} acts on T transitively. For example, a solution $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ is obtained by $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=\sigma^{*} \tau^{*} \sigma^{*}\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$. Combining these, we have the following theorem.

Theorem. With the above notation, we have $T=G^{*}\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.

References

[1] P. Erdös: Note on products of consecutive integers. J. London Math. Soc., 14, 194-198 (1939).
[2] K. Kashihara: The diophantine equation $x^{2}-1=\left(y^{2}-1\right)\left(z^{2}-1\right)$. Mem. Anan College of Tech., 26, 119-130 (1990) (in Japanese).
[3] S. Katayama and K. Kashihara: On the structure of the integer solutions of $z^{2}=\left(x^{2}-1\right)\left(y^{2}-1\right)+a$ (to appear in J. Math. Tokushima Univ., 24).
[4] L. J. Mordell: On the integer solutions of $y(y+1)=x(x+1)(x+2)$. Pacific J. Math., 13, 1347-1351 (1963).
[5] -: Diophantine Equations. Academic Press, London, New York (1969).

