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63. Gamma Factors and Plancherel Measures

By Nobushige KUROKAWA

Department of Mathematical Sciences, University of Tokyo
(Communicated by Kunihiko KODAIRA, M. J. A., Nov. 12, 1992)

We explicitly calculate gamma factors of Selberg zeta functions and give
a neat formula to the associated Plancherel measures. This report supple-
ments the previous one [7]. The details are described in [8] and will be pub-
lished elsewhere.

§ 1. Selberg zeta functions. We fix the notation for Selberg zeta func-
tions following mainly Selberg[13], Gangolli [5], Fried [4] (¢ = 1), and
Wakayama [15]. Let M = I'\ G/K be a compact locally symmetric space of
rank one. We denote by Z,(s) the Selberg zeta function:

Zy(s)= T TA-N@®™H

pEPrim(M) 220
where Prim(M) is the set of prime geodesics of M with the norm function
N (p) = exp(length(p)) and A runs over a certain semi-lattice. We recall
the following fact: Z,(s) has an analytic continuation to all s € C as a
meromorphic function of order dim M and has the following functional equa-
tion

Zy(2 0, — 9) = Zy(s)exp(vol (M) j; " it at).

Here, oo > O and the Plancherel measure g, (¢) calculated by Miatello [12]
are given as follows (we use renormalized p,, &, (¢) and vol(M) to simplify
the constants):
(0) G =S0Q1,2n — 1) (< dim M : odd)

0o = n — 1, u,(it) : polynomial
(1) G =50Q1,2#), pp=n—1/2, dim M = 2,

Uy Gt) = (— D" P, (t) 7 tan(w t),

2 1\*
Pu) = 2yr (= (k= 3))

(2) G=5SUQ02n—1),p0,=n—1/2,dm M = 4n — 2,

U@ty = — P, (t) wtan(x t),
_ 2 1 2\ 2
Pu® = Gu=D1@n = )""H (r=(-3))
(3) G =SUQ,2n), o, = n, dim M = 4n,
Uy (tt) = — P, (t) m cot(m t),
2

P, = (2n)'(2n—1)'t H # — k%
(4) G =Sp(, n), p, = n+1/2 dim M = 4n,
U@ty = Py(t) wtan(zw t),

Pu® = i@ =pril ~ (- %)> k“ (¢ = (- 3))
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(5) G=F,, p,=11/2, dim M = 16,
ty(it) = Py(t) m tan(x t),

Pu) = trasr - 1) (-9 (- %)

(# =) (=),

We omit the case (0) since the gamma factor is “trivial” corresponding to the
non-existence of discrete series. In cases (1)—(5) the gamma factor is
non-trivial and described by the multiple gamma function of order dim M ;
we notice that deg P,, = dim M — 1.

§ 2. Multiple gamma functions and multiple sine functions. We define
the multiple gamma function I',(2) by

r,(z) = exp(% €, (s, 2) |s=o>

where
((s,2)= X (m+ - +n+27"= b3 H, (n+2)"°
n=0

is the multiple Hurwitz zeta function. Next we define the multiple sine func-
tion S, (z) by S,(2) = I,(2)"' I, (r — 2)™". Among many properties of
S,(z) similar to the usual sine function, the following one is fundamental in
this paper.

Theorem 1. The multiple sine function S,(2) satisfies the following
differential equations:

(1) —gf ) = (1" (f, — %) 7 cot(m 2).
(2) an algebraic differential equation of degree two:
S/z) = (1 — P27 ")S, (2)2S,(2)"" + P'(2)P(2)'S)(2) — n°P(2)S,(2)

where P(2) = (- 1’ (321).

When =1, we see that S,(z) = 2sin(r z) since I,(z) = (277:)_1/2
I'(2), so (1)(2) are well-known differential equations for the usual sine func-
tion. It should be remarked that the multiple gamma function I',(z) does not
satisfy any algebraic differential equation according to Holder (» = 1) and
Barnes [1] (r 2 2).

§ 3. Gamma factors. Theorem 2. Let M = I'\ G/K be an even dimen-
stonal compact locally symmetric space of rank one. Define the gamma factor
Iy(s) of M by warre

FM(S) — det ( AM/ _+_ pi + s — po)vol(M)(—l)

using the zeta regularized determinant, wheve M’ = G’ /K is the compact dual
symmetric space. Then:
(1) (T () Tyy(s + 1))70 00 -G =S0Q1,2n),

(Hk OFZn(s + k) (hH2 ) vol(M) (- 1)"'"‘”/2" . G = SU (l,n),
Ty(s) = { (M2 Ty (s + I3 D80y ™00 o 6 = Sp (1),

(ye(s) Tg(s + 1) Ig(s + 2)™ rm(s + 3)® (s + 4)"

T(s +5)7" ... G =F,.

)dlmM/z 1
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(2) The completed zeta funtion Z u(8) = Iy (s)Z,,(s) satisfies the symmetric
functional equation: Zy(s) = Z w (200 — ). Moreover Zy(s) is essentially equal
to det((4, — 02 + (s — p?.

We notice that when M is a compact Riemann surface of genus
g2(G = S0(1,2)) our normalization of the double gamma function I,(z)
gives the following neat result:

I = det ( [ae + 2 +5 = 1) = () s + 1y

N 2
Zy(s) = det(dy — s(1 — 5)) exp((22 — 2)(s — 1) ).

§ 4. Plancherel measures. We have the following new expression of
the Plancherel measures, which suggests the Betti type interpretation for the
coefficients.

Theorem 3. |, H, + ,,H, | -+ G = S0(@,2n),

n 2
> (1) LH., - G=SUQm,

k=0
Py(t+ o) = %! _1_<2n> (Zn > =
Z on\k ) \k+ 1) oHis G =SpAm),
IGHt + 10 IGHt—l + 28 16Ht—2 + 28 16Ht—3 + 10 16£4¢t—4
L + 6l s - G=F,
§ 5. Proofs. We use the following combinatorial result:
Theorem 4. For integers n and m we have:
_Cm+2n—1)m+ 1)-(m + 2n — 2)
(1) oy + 2l = @2n — 1)1
=mult(m(m + 2n — 1), Agm).

2 2,.. q\2
(2) 2:=0 (Z) oty = @m + ) (mn;?nl)_ 1)(:" tn L

and

= mult(m(m + n), 4py).

@ =5 5, (1) (B 1) whas
_Cmt2n+1)m+ D((m+ 2)-(m + 2n — 1))2(m + 2n)
@n+ DIEn— 1!
=multm(m + 2n + 1), 4py,).
(4) 16Hm + 10 16Hm—1 + 28 IGHm—Z + 28 16Hm—3 + 10 lﬁHm—-4 + 16Hm—5
_ @m+Dm+Dm+2)m+3)(m+ 4 (m+5"m+6) m+70’(m+8)m+9) (m+10)
1114567

= mult(m(m + 11), 4p3).

The former identities follow from Saalschiitz (1890) type identities
generalizing Vandermond convolution to three products. The latter identities
are due to Cartan [3]((1)(2)) and Cahn-Wolf [2] (general), which are consid-
ered as real analytic version of the Hirzebruch proportionality principle
since the middle terms are P,,(m + p,). Hence we obtain Theorem 3.

Let
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C(s, 2= 0 YAy + 03) = S _omultm(m + 20,), 4,p) (m + 2)~°

then Theorem 4 gives (in the same four cases)
Con (5, 2) + (,,(5, 2+ 1),

n

(1) Guts, 2+ 0,

k=0
CGsv 2= ou VA + 00 =1 £ 9, (F) (3" 1) Cats 2+ B,

Ci(s, 2) + 10 (s, z+ 1) + 28 (s, 2 + 2)
+ 28 L (s, 2+ 3) + 10 L ,(s, 2+ 4)
L + {i6(s, 2+ 5).
Thus we get (1) of Theorem 2. Now, Theorem 3 gives
S5, (8)S,,(s + 1),

n n) 2

IS,+k%,

S=Po . (—q)dima/2 :=i)1

exp( j; uM(zt)dt> = T s, (s + k)%&w:n,
k=0

S16(8)Sie(s + 1 Sie(s + 2)% Spe(s + 3)* -
Sie(s + 4)'° Sye(s + 5)

by logarithmic differentiation using Theorem 1 and remarking that both sides are
1 at s = p,. So, we get (2) of Theorem 2.

§ 6. Generalized sine functions. The double sine function was firstly
studied by Holder [6] in 1886. Then, after the almost centennial blank, Shin-
tani [14] in 1977 used it to construct class fields over real quadratic fields.
Unfortunately Holder and Shintani used the notation F (2) and did not name
it; the name first appeared in [7]—[9]. We may formulate a version of
Kronecker’s Jugendtraum as follows: for an integral domain A with the quo-
tient field K, K* = K(S,(K)) where S,(x) = H,.,(a¢ — x) is the sine
function of A. We refer to [10] (Appendix 1 “A variation of the Kronecker
limit formula” 1991 May) concerning established examples of S,(x) for A =
Z (Kronecker), an imaginary quadratic integer ring (Takagi), and an integer
ring of positive characteristic (Carlitz-Drinfeld). General calculations using
multiple sine functions S,(z; (w,,...,»,)) with parameters satisfying S,(z;
1,...,1)) = S,(2) were written in [8] containing the partially known real
quadratic case due to Shintani [14]. There g-analogues of multiple sine func-
tions were used also.

Multiple sine functions are considered as concrete examples of multiple
zeta functions formulated in [9]. We refer to Manin [11] for the excellent ex-
position from the view point of absolute motives.
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